期刊文献+

基于广义协方差张量分解的欠定盲辨识算法 被引量:2

Underdetermined Blind Identification Algorithm Based on Generalized Covariance and Tensor Decomposition
下载PDF
导出
摘要 针对欠定盲源分离中的混合矩阵估计问题,该文利用广义协方差的统计和结构性质以及塔克分解的压缩特征,提出了一种新的欠定盲辨识算法。首先基于广义协方差矩阵建立核函数,再将核函数堆叠成三阶张量模型,然后应用塔克分解求混合矩阵。该算法不仅具有优良的辨识性能,而且具有较低的实现复杂度。最后,仿真实验证明了该文算法的有效性。 In view of the estimation problem of mixing matrix in the underdetermined blind source separation (UBSS), a novel underdetermined blind identification algorithm is proposed. This proposed algorithm employs the statistical and structure properties of generalized covariance and the compressive characteristic of Tucker decomposition. Firstly, the core functions are built based on generalized covariance matrix. Then the core functions are stacked as a three-order tensor, and the tucker decomposition of constructed tensor is executed to estimate the mixing matrix. The proposed algorithm has not only the better identification performance, but also the lower computational complexity. At last, the simulation experiments demonstrate the effectiveness of the proposed algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第6期893-897,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61179006) 国家863项目(2012AA01A502) 四川省科技支撑计划(2014GZX0004)
关键词 盲源分离 累积量 广义协方差 张量分解 欠定盲辨识 blind source separation cumulant generalized covariance matrix tensor decomposition underdetermined blind identification
  • 相关文献

参考文献1

二级参考文献17

  • 1何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学(E辑),2006,36(8):864-879. 被引量:26
  • 2Hyvarinen A. Karhunen J, Oja E. Independent conponent anaylysis[M]. New York, Wiley, 2001.
  • 3Cichocki A. Amari S I. Adaptiwe blind signal and image processing[M]. New York: Wiley, 2002.
  • 4Comon P, lutten C. Handbook of blind source separation, independent omponent analysis and applications[M]. London: Academic Pr 3ss,2010.
  • 5Bofill P, Zibulevsky M. Underdetermined blind source separation using sl.arse representations[J]. Signal Processing,2001, 81(11):2353-2362.
  • 61.i Y Q, Shun Ichi A, Andrzej C, et al. Underdetermined blind source separalion based on sparse representation[J]. IEEE Trans. on Signal Processing ,2006,54(2) :423 - 437.
  • 7Aissa E1 Bey A, Linh-Trung N, Abed-Meraim K, et al. Underdetermind blind separation of nondisjoint sources in the time-fre -qluency doma in[J]. IEEE Trans. on Signal Processing ,2007,55 (3) :897 - 907.
  • 8Peng D Z, Xiang Y. Underdetermined blind source separation based on relaxed sparsity condition of sources[J]. IEEE Trans. on Signal Processing, 2009,57(2) : 809 - 814.
  • 9De L L, Josephine C. Blind identification of underdetermined mixtures by simultaneous matrix diagonalization [J]. IEEE Trans. onSignal Processing,2008,56(3):1096-1105.
  • 10Kolda T G, Bader B W. Tensor decompositions and applica tions[J]. SIAM Review, 2009,51(3) :455-500.

共引文献6

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部