期刊文献+

氧化锰/介孔碳/聚苯胺三元复合材料的构建及其超电容性能 被引量:1

Synthesis and supercapacitive property of mangnese oxide/mesoporous carbon/polyaniline ternary composite
下载PDF
导出
摘要 通过自聚合反应及高温热处理手段,再采用化学氧化聚合法在复合物的表面自组装生长聚苯胺(PANI)纳米须,成功构筑了MnO/介孔碳(MC)/PANI三元纳米复合材料。材料的结构及其电化学性能测试结果表明:该复合材料的比电容在1.0A/g的电流密度下达到498.6F/g,显著高于MnO/MC二元复合材料的比电容(212F/g);当电流密度增加至10A/g时,比电容仍能保持352F/g。经过1000次的充放电循环,复合电极的比容量保持率为71.6%。 Manganese monoxide/mesoporous carbon (MnO/MC) composite nanowires were firstly synthesized via self-polymerization reaction and thermal treatment at high temperature by using dopamine as carbon source and MnO2 as precursor. Subsequently,self-assembling growth of polyanline (PANI) nanowhiskers on the surface of MnO/MC composite by chemical oxidative method resulted in the formation of MnO/MC/PANI ternary nanocomposite. The morphology and structure of composite were characterized and electrochemical performance of composite as supercapacitor electrode materi- als was evaluated. The results indicated the ternary composite electrode possessed a high specific capacitance of 498.6F/g at a current density of 1.0A/g and 352F/g even at a high current density of 10A/g,and still maintained 71.6% of the original capacitance after 1000 charge/discharge cycles at a current density of 1A/g.
出处 《化工新型材料》 CAS CSCD 北大核心 2016年第11期82-84,87,共4页 New Chemical Materials
基金 上海市基础重点项目(13NM1400801)
关键词 氧化锰 介孔碳 聚苯胺 纳米复合材料 超级电容器 manganese oxide, mesoporous carbon, polyaniline, nanocomposite, supercapacitor
  • 相关文献

参考文献3

二级参考文献35

  • 1Y. Chen and X. ChenWuhan University of Science and Technology, Wuhan 430081, ChinaQ.F. Wang, G.L. Yuan and. C. Y. LiTechnical Center of Wuhan Iron and Steel Co., Wuhan 430080, ChinaX. Y. Li and Y.X. WangCentral Iron and Steel Research Institute, Beijing 1.EFFECT OF CHEMICAL COMPOSITION ON RETAINED AUSTENITE IN TRIP STEEL[J].Acta Metallurgica Sinica(English Letters),2002,15(4):339-345. 被引量:19
  • 2马利,陈云,刘家和,王成章.微乳液法合成纳米聚苯胺的研究[J].包装工程,2005,26(1):57-58. 被引量:10
  • 3Angelopoulos M,Astunas G E,Emer S P,et al.Polyaniline solution,film and oxidation state[J].Mol Cryst,1988,160:151.
  • 4MacDiarmid A G.Synthetic metals:a novel role for organic polymers[J].Synth Met,2002,125:11-22.
  • 5Kim B J,Oh S G,Han M G,et al.Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions[J].Synth Met,2001,122:297-304.
  • 6Moultion S E,Innis P C,Kane-Maguire L A P,et al.Polymerization and characterization of conducting polyaniline nanoparticle dispersions[J].Current Applied Physics,2004,(4):402-406.
  • 7Han M G,Cho S K,Oh S G,et al.Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution[J].Synth Met,2002,126:53-60.
  • 8Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. E; Zhang, X. G. Journal of Materials Chemistry A 2014, 2 (32), 12662. doi: 10.1039/C4TA02097A.
  • 9Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho J.; Bruce, E G. Angewandte Chemie International Edition 2012, 51 (40), 9994 doi: 10.1002/anie.201201429.
  • 10Liu, E; Verbrugge, M.; Soukiazian, S. Journal of Power Sources 2006, 156 (2), 712. doi: 10.1016/j.jpowsour.2005.05.055.

共引文献22

同被引文献23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部