期刊文献+

拟南芥AtSEC14基因反义RNA植株的获得及抗病性检测

Obtainment and analysis of antisense RNA transgenic plants of AtSEC14 from Arabidopsis thaliana
下载PDF
导出
摘要 为确定拟南芥抗灰霉病相关基因AtSEC14的功能,本试验构建了AtSEC14基因的反义RNA载体;通过农杆菌介导的遗传转化方法,将其转化拟南芥野生型Col-0中;利用潮霉素抗性筛选和PCR检测,获得了阳性转基因植株。利用半定量RT-PCR技术,在转基因株系中未检测到AtSEC14基因的表达,说明该基因反义RNA载体的转入能特异影响AtSEC14基因的表达,表明试验所获得的转基因植株是AtSEC14基因的反义RNA转基因植株。对所获得的反义RNA转基因植株进行抗病性鉴定,发现反义RNA转基因植株对灰葡萄孢的敏感性增强,表明AtSEC14基因在拟南芥抗灰葡萄孢过程中起正调控的作用。 To identify the function of Arabidopsis AtSEC14 gene in the defense response to Botrytis cinerea ,the antisense RNA vector of the AtSEC14 gene was constructed and transferred into Arabidopsis wild-type Col-0 by Agrobacterium-mediated method. Positive trans- genic line was obtained through hygromycin B screening and PCR assays. The expression of AtSEC14 in positive transgenic line was obviously reduced comparing with that of Col-0 by semi-quantity RT-PCR analysis, suggesting that the antisense RNA vector has been inserted into the genome of Arabidopsis and induced the decrease of AtSEC14 gene expres- sion. Antisense RNA transgenic plants of AtSEC14 were distinguishable from Col-0 in their response to B. cinerea. Antisense RNA transgenie plants exhibited obviously susceptibility to B. cinerea, while Col-0 exhibited obviously resistance to B. cinerea. These results indicated that the AtSEC14 gene played a positive role in Arabidopsis resistance to B. cinerea.
出处 《河北农业大学学报》 CAS CSCD 北大核心 2016年第6期42-46,共5页 Journal of Hebei Agricultural University
基金 河北省自然科学基金项目(C2014405010)
关键词 拟南芥 灰葡萄孢 AtSEC14 反义RNA Arabidopsis thaliana Botrytis cinerea AtSEC14 antisense RNA
  • 相关文献

参考文献2

二级参考文献30

  • 1曾群,陈慧勤,赵淑清,赵占军.水杨酸对拟南芥防卫反应酶系的诱导[J].华北农学报,2005,20(1):75-77. 被引量:4
  • 2徐伟,严善春.茉莉酸在植物诱导防御中的作用[J].生态学报,2005,25(8):2074-2082. 被引量:104
  • 3Kunkel B N,Bent A F,Dahlbeck D,et al.RPS2,an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2[J].The Plant Cell,1993,5(8):865-875.
  • 4Grant M R,Godiard L,Straube E,et al.Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance[J].Science,1995,269 (5225):843-846.
  • 5Uknes S,Mauch-Mani B,Moyer M,et al.Acquired resistance in Arabidopsis[J].The Plant Cell,1992,4(6):645-656.
  • 6Ryals J A,Neuenschwander U H,Willits M G,et al.Systemic acquired resistance[J].The Plant Cell,1996,8(10):1809-1819.
  • 7Henry S A,Patton-Vogt J L.Genetic regulation of phospholipid metabolism:yeast as a model eukaryote[J].Progress Nucleic Acids Research Molecular Biology,1998,61(2):133-179.
  • 8Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003, 15(1): 165-178.
  • 9Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letter, 2006, 580(14): 3498-3504.
  • 10Froidure S, Canonne J, Daniel X, Jauncan A, Briere C, Roby D, Rivas S. AtsPLA2-alpha nuclear relocalization by the .4rabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proceedings of the National Academy of Sciences of the USA, 2010, 107(34): 15281-15286.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部