期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
解决“多元变量”最值问题的几种思想方法
被引量:
3
下载PDF
职称材料
导出
摘要
有关"多元变量"的最值问题经常在近几年的模考和高考中出现,这类问题因综合性强、形式灵活多变、思维严密而具有挑战性,成为最值求解中的"难点",同时也成为考查学生能力的"热点"题型.对于"多元变量"最值问题的解决,常用求解方法有:函数思想、方程思想、不等式思想、换元思想、三角策略、解析几何策略等,具体运用这些策略时有消元法、换元法、数形结合、等价转化等手段.
作者
丁称兴
机构地区
江苏省溧水高级中学
出处
《数学教学研究》
2016年第10期62-65,67,共5页
关键词
最值问题
换元
数形结合
已知条件
一元二次方程
消元法
实数根
联立方程组
判别式法
当且仅当
分类号
G634.6 [文化科学—教育学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
0
共引文献
0
同被引文献
11
引证文献
3
二级引证文献
2
同被引文献
11
1
王文清.
利用对称思想速解高考客观题中的不等式最值问题[J]
.中国数学教育(高中版),2011(12):24-27.
被引量:1
2
翁远珍,杨唐桂.
一类求最值问题的快速解法[J]
.数理化学习(高三),2013(12):3-3.
被引量:1
3
狄闻于.
合理定位变量 有效解决双变量最值问题[J]
.中学数学研究,2016(4):36-38.
被引量:1
4
房晓南,富春江,洪恩锋.
利用对称思想巧解多元函数最值[J]
.中学数学研究(华南师范大学)(上半月),2016,0(5):44-46.
被引量:1
5
查晓东,张玲.
“单变量”视角处理“多变量”最值和不等式问题[J]
.数学通讯(教师阅读),2016,0(5):24-27.
被引量:4
6
丁称兴.
“多元变量”最值问题的求解策略[J]
.河北理科教学研究,2017(3):10-13.
被引量:1
7
吴洪生.
多元变量最值问题探究性教学的实践与思考——以一道高考试题的教学为例[J]
.中国数学教育(高中版),2018(1):98-101.
被引量:2
8
张于波.
双变量换元求最值问题例解[J]
.中学数学杂志,2018(5):48-49.
被引量:2
9
向城,安邦,刘成龙.
例谈多元变量最值问题求解策略[J]
.中学数学研究,2020(5):47-49.
被引量:1
10
王加白,安凤吉.
多元函数最值的求解策略[J]
.数学通讯,2021(4):22-24.
被引量:3
引证文献
3
1
林钦.
双变量最值问题的教学对策探究[J]
.数理化学习(教研版),2019,0(7):29-30.
2
钟国平.
多视角灵活切入多变量最值问题[J]
.数学通讯,2021(8):32-36.
被引量:1
3
于先金,张一军.
多元对称函数“非常规最值”解法探究[J]
.高中数学教与学,2021(8):13-15.
被引量:1
二级引证文献
2
1
刘海涛.
一道对称函数取最值条件不对称问题的研究[J]
.数理化学习(高中版),2022(8):20-24.
被引量:1
2
刘力.
深度理解基本不等式 多维探究感悟求最值[J]
.数学通讯,2023(17):18-21.
被引量:1
1
丁克华.
多元变量常见的处理方法[J]
.新课程学习(中),2012(5):61-61.
2
钱桂圣.
例说“多元变量”[J]
.数学之友,2009,23(8):102-104.
3
赵志祥,刘彤.
带有不确定性的多元变量的最小二乘分析方法[J]
.原子能科学技术,1995,29(2):185-188.
4
徐露.
两类多元变量定值的最值问题研究[J]
.数学之友,2015,29(4):59-61.
5
杨建效.
换元法应用实例[J]
.陕西教育(高教版),2009(6):100-100.
6
刘国发.
论换元法判断复合函数的单调性[J]
.数学学习与研究,2015(13):94-95.
7
李俊,王艳丽.
Taylor公式的推广公式的推广[J]
.数学学习与研究,2014,0(19):115-116.
被引量:1
8
李艳.
浅谈导数在实际生活中的一些应用[J]
.教育界(高等教育),2016,0(3):63-63.
被引量:1
9
任义新.
以递推关系为载体的数列通项公式求解策略[J]
.中学生数理化(高二数学、高考数学),2009(10):8-9.
10
陈秀林,朱世坚.
不等式恒成立问题的几种求解策略[J]
.数学之友,2012,26(20):58-60.
数学教学研究
2016年 第10期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部