期刊文献+

真空活化法制备TiO_2可见光催化剂及其长效性研究

Preparation of TiO_2 Visible-light Catalyst by Vacuum Activation Method and Study on Its Long-term Efficiency
全文增补中
导出
摘要 以商业TiO_2(Degussa P25)作为原料,采用简单的一步真空活化法制备了Ti^(3+)自掺杂TiO_2可见光催化剂,并通过XRD、UV-Vis、FT-IR、XPS等手段对催化剂性能进行表征。随后,以甲基橙模拟目标污染物,在可见光下对Ti^(3+)自掺杂TiO_2的可见光催化性能以及长效性进行研究。结果表明:在可见光照射下,真空活化后的P25降解甲基橙的效率明显优于纯P25。循环测试结果表明:由于Ti^(3+)较活跃,容易被氧化,因此催化剂在可见光照射下长效性并不理想。但由于可以通过真空活化法反复对催化剂进行再生,这在一定程度上弥补了其可见光活性快速流失的缺憾。 A simple vacuum activation method was applied to prepare Ti3+ self-doping TiO2 visible-light catalyst by using commercial TiO2 (Degussa P25)as the raw material.The properties of the catalyst were characterized by XRD,UV-Vis,FT-IR and XPS.Finally,visible light catalysis property and long-term efficiency of Ti3+ self-doping TiO2 were studied by using methyl orange as a target pollutant under the illumination of visible light.The results indicate that under the visible-light irradiation,the methyl orange degradation efficiency of P25 after vacuum activation is obviously superior to that of pure P25.Cyclic test result shows that since Ti3+ is active,it can be easily oxidized.Thus,long-term efficiency of the catalyst is not ideal under visible light illumination.However,the catalyst can be regenerated by vacuum activation method,which could make up the rapid inactivation of visible light activity.
作者 吴三定 王騊 郑晋生 俞烨 王晟 WUSanding WANGTao ZHENGJinsheng YUYe WANGSheng(Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China Zhengjiang Ningbo Weike Jinghua Renfeng Home Textile Co. , Ltd, Ningbo 315821, China)
出处 《浙江理工大学学报(自然科学版)》 2016年第6期814-819,共6页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(51372227 51471153) 浙江省自然科学基金项目(LY14E020011 2015C33008) 浙江理工大学"521人才培养计划"项目
关键词 真空活化法 Ti3+自掺杂TiO2 可见光催化 长效性 vacuum activation method visible light catalysis long-term efficiency
  • 相关文献

参考文献2

二级参考文献35

  • 1陈崧哲,张彭义,祝万鹏,刘福东.可见光响应光催化剂研究进展[J].化学进展,2004,16(4):613-619. 被引量:59
  • 2Vu A U, Nguyen Q T, Bui T H L, et al.[J]. Adv Nat Sci.. Nanosci Nanotechnol, 2010, 1(1): 015009.
  • 3Romero D D, Torres G, Arevalo J C, et al. [J]. J SolGel Sci Technol, 2010, 56(3): 219-226.
  • 4Tian F H, Liu C B, Zhang D J, et al. [J]. Chem Phys Chem, 2010, 11(15): 3269-3272.
  • 5GaoP, WuJ, Liu Q J, et al.[J]. ChinPhys B, 2010, 19(8): 087103.
  • 6Akpan U G, Hameed B H. [J]. Appl Catal A-Gen, 2010, 375(1): 1-11.
  • 7Kamegawa T, Sugimura K, Maki K, et al.[J]. J Phys: Conf Set, 2009, 165(1): 012038.
  • 8Ou Z T, Liang P H, Liu X L, et al.[J]. J Sol-Gel Sci Technol, 2000, 18(2): 159-166.
  • 9Zhang J Y, Boyd I W, O'Sullivan B J, et al. [J]. J Non-Cryst Solids, 2002, 303(1) : 134-138.
  • 10Huang J I., Shih K C, Chen S K.[J]. Ceram Int, 1994, 20(5): 293-297.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部