摘要
通过分析一阶微分方程解曲线切线斜率取值的特点,找出了解曲线的几何意义.根据解曲线的几何意义,以一个具体的一阶方程为例讲解了画出一阶方程近似解的3步法,直观地展示了一阶微分方程的几何意义.利用计算机数值模拟了具体的方程,得到了2类特殊的一阶微分方程线素场的特点以及在通解中常数C的几何意义.
Through analyzing the value characteristics of the slope of of first order differential equations, find the geometric significance of solution curves. According to the geometric significance of solution curves, by taking a specific first order differential equation as an example, illustrated the three-step method of sketching the solution graphs, and intuitionally show the geometry significance of the first order differential equation. Finally, by using numerical simulation, obtain the slope field characteristics of two special first-order differential equations, and the geometry significance of the constant C in the general solution.
出处
《高师理科学刊》
2016年第11期55-58,共4页
Journal of Science of Teachers'College and University
基金
哈尔滨理工大学教学改革项目(320150023
320150020
120150006
120140004
B201300026)
关键词
一阶微分方程
图解法
斜率场
等倾线
解曲线
first-order differential equations
phase graphic solution method
slope field
the curve of same slope line
solution graphs