期刊文献+

PDM中BOM数据的MapReduce遍历查询研究 被引量:2

Research on Traversal of BOMData Based on MapReduce in PDM
下载PDF
导出
摘要 物料清单(BOM)是产品数据管理(PDM)系统中最重要的基础数据,层次复杂,版本众多,零部件数量巨大,逐步呈现大数据态.现有基于RDB的BOM查询算法,很难实现高并发的复杂层次查询,且系统运行效率低.通过对BOM数据查询特点的分析,利用云计算技术对BOM查询算法并行化,提出了一种基于MapReduce的BOM数据遍历查询策略.以NoSQL为底层数据存储系统,结合MapReduce并行计算及迭代思想,通过矩阵推演,实现了基于MapReduce模型的BOM查询算法.实验结果表明,所提策略的查询时间随节点域的增加趋于平稳,较传统算法在查询效率上提高了一个数量级,系统性能良好. The bill of materials ( BOM ) , which has complex hierarchies, numbers of versions, and plenty of parts, is the most important basic data and becomes big data state in the product data management(PDM) environment. The existing BOM query algorithm based on RDB is very difficult to achieve high concurrency of complex hierarchical query requirements and high operating efficiency of the system. In this paper,we analyze the query characteristics of BOM and utilize cloud computing technology to parallel the BOM algo- rithm, and propose a BOM data traversal query strategy based on MapReduce. The strategy uses NoSQL as the underlying storage sys- tem, and combines with the MapReduce parallel computing and iterative methods, through Matrix deduction. The experimental results show that the proposed method is stable with the increase of the node domain and outperforms the traditional algorithm by an order of magnitude, and the system works well.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第12期2685-2689,共5页 Journal of Chinese Computer Systems
基金 航空科学基金项目(2013ZG54032)资助
关键词 物料清单 MAPREDUCE 产品数据管理 NoSQL技术 矩阵 Bill of materials MapReduce product data management NoSQL Matrix
  • 相关文献

参考文献11

二级参考文献100

  • 1黄学文,范玉顺.BOM多视图和视图之间映射模型的研究[J].机械工程学报,2005,41(4):97-102. 被引量:54
  • 2石为人,张星,马振红,林荫华.关系型数据库BOM表的遍历算法的改进及实现[J].重庆大学学报(自然科学版),2005,28(7):82-85. 被引量:15
  • 3余锐林,吴顺祥.一种改进的BOM展开及低层码生成算法[J].计算机工程与应用,2005,41(27):100-102. 被引量:10
  • 4任荣升,徐建良.制造业中BOM建模及算法解决方案[J].微计算机信息,2006,22(09X):23-25. 被引量:14
  • 5张旭辉,宁汝新,张旭.基于PDM的动态BOM管理技术[J].航空制造技术,2007,50(6):86-89. 被引量:7
  • 6Dean J, Ghemawat S. MapReduce: Simplified dala processing on large clusters//Proceedings of the Conference on Operating System Design and Implementation(OSDU04,). San Francisco, USA, 2004: 137-150.
  • 7Thusoo A, Sarma J S, JainN, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: A warehousing solution over a map-reduce framework//Proceedings of the Conference on Very Large Databases (VLDB' 09). Lyon, France, 2009:1626-1629.
  • 8Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A not-so-foreign language for data processing//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD' 08). Vancouver, BC, Canada, 2008:1099 1110.
  • 9Bu Y, Howe B, Balazinska M, Ernst M D. HaLoop.. Efficient iterative data processing on large clusters//Proceedings of the Conference on Very Large Databases (VLDB' 10). Sin gapore, 2010:285-296.
  • 10Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J, Fox G. Twister: A runtime for iterative MapReduce// Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. Chicago, Illinois, USA, 2010:810-818.

共引文献288

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部