期刊文献+

三种脂肪酸甲酯音速测量与相关热物理性质推算 被引量:2

Measurement of sound speed and derived properties of three FAMEs
下载PDF
导出
摘要 脂肪酸甲酯(FAMEs)是生物燃料的重要成分,为了获取它们的热物理性质数据,利用布里渊散射法测量了3种脂肪酸甲酯常压下的音速,测量温度范围为293.15~423.15 K(己酸甲酯)、293.15~443.15 K(庚酸甲酯)、463.15K(辛酸甲酯)。为方便工程应用,将文献数据和本文实验数据拟合成温度的关联式,实验值与关联式计算值的相对偏差绝对平均值为:0.29%(己酸甲酯)、0.24%(庚酸甲酯)、0.27%(辛酸甲酯)。应用音速实验数据,分别结合Wada模型和Auerbach模型估算3种脂肪酸甲酯的密度和表面张力。结果表明,Wada模型可以很好地用来估算密度,而Auerbach模型对表面张力的估算结果与文献值偏差较大。 Fatty acid methyl esters(FAMEs) are the main components of biodiesels. In order to obtain their thermophysical properties data, the sound speeds of three FAMEs were measured using Brillouin light scattering method(BLS) at the temperature from 293.15 to 463.15 K and pressure of 0.1 MPa. The correlations for the sound speed of FAMEs in literature and this paper were also fitted as the function of temperature to satisfy the usage in engineering areas. The AADs were 0.29% for methyl caproate, 0.24% for methyl heptanoate and 0.27% for methyl caprylate, respectively. And the experimental data were also used to predict the density and the surface tension by Wada's model and Auerbach's model, respectively. It showed that the predictive ability of Wada's model for the density was good, while Auerbach's model did not perform well in the prediction of the surface tension.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第12期4922-4928,共7页 CIESC Journal
基金 国家杰出青年科学基金项目(51525604)~~
关键词 生物柴油 热力学性质 测量 模型 biodiesel thermodynamic properties measurement model
  • 相关文献

参考文献1

二级参考文献25

  • 1KORBITZ W. Bindiesel production in Europe and North America, an encouraging prospect [J]. Renew Energy, 1999, 16: 1078-1083.
  • 2MAZUTT! M A, VOLL F A P, FILHO L C, et al. Thermophysical properties of biodiesel and related systems: (liquid+liquid) equilibrium data for soybean biodiesel [J]. The Journal of Chemical Thermodynamics, 2013, 58: 83-94.
  • 3FLAVIO C. Impact of biodiesel bulk modulus on injection pressure and injection timing. The effect of residual pressure [J]. Fuel, 2011, 90: 477-485.
  • 4TORRES J E, KEGL M, DORADO R, et aL Numerical injection characteristics analysis of various renewable fuel blends [J]. Fuel, 2012, 97: 832-842.
  • 5TRUSLER J P M. Physical Acoustics and Metrology of Fluids [M]. Bristol: Adam Hilger, 1991: 210-230.
  • 6LIU Q, FENG X J, AN B L, et al. Speed of sound measurements using a cylindrical resonator for gaseous carbon dioxide and propane [J]. Journal of Chemical & Engineering Data, 2014, 16: 2788-2798.
  • 7HE M G, LIU Z G; YIN J M. Measurement of speed of sound with a spherical resonator: HCFC-22, HFC-152a, HFC-143a, and propane [J]. International Journal of Thermophysies, 2002, 23: 1599-1615.
  • 8DAVILA M 1, GEDANITZ H, SPAN R. Speed of sound measurements of liquid C1-C4 alkanols [J]. The Journal of Chemical Thermodynamics, 2016, 93: 157-163.
  • 9WEGGE R, RICHTER M, SPAN R. Speed of sound measurements in ethanol and benzene over the temperature range from (253.2 to 353.2) K at pressures up to 30 MPa [J]. Journal of Chemical & Engineering Data, 2015, 60: 1345-1353.
  • 10FROBA A P, BOTERO C, LEIPERTZ A. Thermal diffusivity, sound speed, viscosity, and surface tension of R227ea (1,1,1,2,3,3,3- heptafluoropropane) [J]. International of Journal Thermophysics, 2006, 27: 1609-1625.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部