摘要
针对风电发展与电网建设、负荷分布不匹配产生的弃风限电问题,结合国内风电大规模、远距离集中并网的特点,提出一种适用于限风情况下的风电场群有功分配分层调控策略,包括子场层调控策略和机组层调控策略。采用加权移动平均法对风电功率进行超短期预测,基于多目标函数模型及遗传算法对子场层和机组层分配有功出力任务。以东北某实际风电场群为算例,研究表明,该调控策略能实现风电场和机组有功出力任务的优化分配,可提高电网消纳风电水平、降低线路有功损耗。
Large-scale centralized integration at a long distance became the characteristic of the development of domestic wind power. For the problem of wind curtailment and power rationing due to that the wind power development mismatch power grid construction and load distribution, this paper proposed a hierarchical coordinated control strategy on active power of clustered wind farms during wind curtailment, including the sub field hierarchical coordinated control strategy and the unit hierarchical coordinated control strategy. The strategy used the weighted moving average method for the ultra-short-term prediction of wind power, active power output of the sub field hierarchical and the unit hierarchical was assigned by the multi objective function model and genetic algorithm. The case study of a real clustered wind farms in Northeast showed that the proposed strategy can realize the optimal allocation of active power output of wind farms and units to improve the level of wind power consumptive and reduce the active power loss of line.
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2016年第11期2807-2813,共7页
Acta Energiae Solaris Sinica
基金
国家自然科学基金(51207018)
国家重点基础研究发展(973)计划(2013CB228201)
吉林省科技发展计划(20130522174JH)
关键词
限风
风电场群
有功出力
分层调控
遗传算法
wind curtailment
clustered wind farms
active power output
hierarchical coordinated control
genetic algorithm