期刊文献+

分数阶非线性多智能体系统的一致性研究 被引量:2

Consensus of fractional-order multi-agent systems with nonlinear dynamics
下载PDF
导出
摘要 研究固定拓扑结构下的分数阶非线性多智能体系统协调控制的动力学模型问题。由于实际多智能体系统中,系统的状态变量难以全部测量,为了克服这一困难,利用状态观测器对系统状态进行重构并基于重构状态进行状态反馈。利用分数阶Lyapunov稳定性理论,证明了当反馈增益矩阵满足一定的线性矩阵不等式(LMI)条件时,系统中的智能体最终趋于所给定的目标状态。最后利用分数阶微积分的预估—校正算法进行数值仿真验证了理论分析的有效性和可行性。 This paper discusses the consensus problem of fractional-order multi-agent systems with nonlinear dynamics in fixed network topology. Because the state variables can not be measured completely in reality control systems, the recon-structed states from the state observer are employed to overcome this obstacle in the state-feedback controller design. Based on the Lyapunov stability theory of fraction-order systems, the nonlinear multiple agents in the network can eventually converge to the given objective state when the feedback gain matrix satisfies a certain LMI condition. The simulation results demonstrate the effectiveness and validity of the proposed method by using the fractional calculus predictor-corrector algorithm.
作者 李静 方正
机构地区 江南大学理学院
出处 《计算机工程与应用》 CSCD 北大核心 2016年第23期63-67,共5页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金(No.JUSRP51317B)
关键词 状态观测器 分数阶 多智能体系统 state observer fractional-order multi-agent systems
  • 相关文献

参考文献1

二级参考文献20

  • 1LIAN Zhaotong, DESHMUKH A. Performance prediction of an unmanned airbom vehicle multi-agent system[ J]. European Jour- nal of Operational Research, 2006, 172 (2) : 680 -695.
  • 2LIN Zhiyun, FRANCIS B, MAGGIORE M. Necessary and suffi- cient graphical conditions for formation control of unicycles [ J ]. IEEE Transactions on Automatic Control, 2005, 50 ( 1 ) : 121 - 127.
  • 3OLFATI-SABER R. Flocking for multi-agent dynamic systems : al- gorithms and theory [ J ]. IEEE Transactions on Automatic Con- trol, 2006, 51 (3) :401 -420.
  • 4OLFATI-SABER R, SHAMMA J S. Consensus filters for sensor networks and distributed sensor fusion [ C ]//Procceedings of 44th IEEE Conference on Decision and Control, and the European Con- trol Conference, December 12 -15, 2005, Plaza de Espa~a Se- ville. USA : IEEE, 2005 : 6698 - 6703.
  • 5TANNER H G, JADBABAIE A, PAPPAS G J. Stable flocking of mobile agents[ C ]//Proceedings of 42nd IEEE Conference on De- cision and Control, December 9- 12, 2003, Maui, Hawai. USA: IEEE, 2003 : 2010 -2021.
  • 6OLFATI-SABER R, MURRAY R M. Consensus protocols for net- works of dynamic agents [ C ]//Proceedings of 2003 American Con- trol Conference, June 4 - 6, 2003, Denver, Colorado. USA: IEEE, 2003:951 -956.
  • 7OLFATI-SABER R, MURRAY R M. Consensus problems in net-works of agents with switching topology and time - delays [ J ]. IEEE Transactions on Automatic Control, 2004, 49 (9):1520 -1533.
  • 8SEO J H, SHIM H, BACK J. Consensus of high - order linear systems using dynamic output feedback compensator: low gain ap- proach[ J ]. Automatic, 2009, 45 ( 11 ) : 2659 - 2664.
  • 9REN Wei, MOORE K, CHEN Yangquan. High-order consensus algorithms in cooperative vehicle systems[ C ]//Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, December 17 - 19, 2006, Ft. Lauderdale, FL. USA: IEEE 2006 : 457 -462.
  • 10NI Wei, CHENG Daizan. Leader-following consensus of multi-a- gent systems under fixed and switching topologies[ J]. Systems & Control Letters, 2010, 59(3-4): 209-217.

共引文献4

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部