期刊文献+

无线传感器网络中一种能量有效k度覆盖算法 被引量:2

Energy efficient k-degree coverage algorithm in wireless sensor networks
下载PDF
导出
摘要 覆盖率是衡量无线传感器网络性能的重要指标之一。在对目标节点进行k覆盖的过程中,会出现大量数据冗余迫使网络出现拥塞的现象,导致网络通信能力和覆盖能力降低、网络能量快速消耗等问题。为此,提出了一种能量有效k度覆盖算法(Energy Efficient k_degree Coverage Algorithm,EEKCA)。该算法利用节点之间的位置关系构造出覆盖网络模型,通过分析网络模型给出监测区域内节点覆盖期望值及对整个监测区域覆盖所需最少节点数量的求解过程;在能耗方面,给出了工作节点和邻居节点之间的能量转换函数比例关系,利用函数比例关系完成低能量节点的调度,进而达到全网能量平衡,优化了网络资源。最后,仿真实验结果表明,该算法不仅可以提高网络覆盖质量,还可有效抑制节点能量快速消耗,从而延长网络生存周期。 Coverage ratio is one of the important performance metrics in wireless sensor networks. When the targets are k covered by sensors, the produced more redundant data may cause network jam, which lowers the communication and coverage capability of network, and also causes energy consumed rapidly. Therefore, this paper proposes an energy efficient k coverage algorithm by using location relation of nodes to construct coverage network model. Coverage area expectation value and the required number of nodes covered all monitoring area are given by the analysis of coverage network model. On the aspect of energy consumption, the nodes with low energy savings are scheduled by the given expectation functions proportion between the working nodes and neighboring nodes, which balances energy consumption of the whole network, and optimizes network resource. Finally, the simulation results show that the proposed k coverage algorithm not only improves the network’s coverage quality, but also cuts down the rapid energy consumption, and then it prolongs the network lifetime.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第23期142-147,235,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61503174 No.U1304603) 河南科技攻关重点资助项目(No.142102210471 No.162102210113 No.162102410051) 河南省高等学校重点科研项目资助计划(No.17A520044) 广州市自然科学基金(No.1201430560) 广东省自然科学基金面上项目(No.2016A030313540)
关键词 无线传感器网络 能量有效 k度覆盖 覆盖质量 网络生存周期 wireless sensor networks energy efficient k-degree coverage coverage quality network lifetime
  • 相关文献

参考文献5

二级参考文献48

  • 1毛莺池,龚海刚,刘明,陈道蓄,谢立.ELIQoS:一种高效节能、与位置无关的传感器网络服务质量协议[J].计算机研究与发展,2006,43(6):1019-1026. 被引量:14
  • 2Tian D,Georganas ND.A coverage-preserving node scheduling scheme for large wireless sensor networks[ A ]. Proc. of the 1st ACM Int'l Workshop on Wtreless Sensor Networks and Applications (WSNA) [C]. New York: ACM Press, 2002.32 - 41.
  • 3Ye F,Zhong G, Cheng J,Lu S,Zhang L.PEAS:a robust energy conserving protocol for long-lived sensor networks [ A ]. Proc. of the 23rd Int'l Conf. on Distributed Computing Systems (ICDCS) [ C ]. Providence: IEEE Press, 2003.28 - 37.
  • 4Wu K, Gao Y, Li F, Xiao Y. Lightweight deployment-aware scheduling for wireless sensor networks[ J ]. ACM/Kluwer Mobile Networks and Applications (MONET), 2005, 10 (6) : 837 - 852.
  • 5Wang D,Xie B,Agrawal DP. Coverage and lifetime optimization of wireless sensor networks with Gaussian disa-ibution[ J]. IEEE Trans. on Mobile Computing, 2008,7(12) : 1444 - 1458.
  • 6Zou Y, Chakrabarty K. A distributed coverage- and connectivity -centric technique for selecting active nodes in wireless sensor networks[J]. IEEE Trans. on Computers, 2005,54(8) : 978 - 991.
  • 7Ding Y, Wang C, Xiao L. An adaptive partitioning scheme for sleep scheduling and topology control in wireless sensor networks[ J]. IEEE Trans. on Parallel and Distributed Systems, 2009,20(9) : 1352 - 1365.
  • 8Li N, H0u JC, Sha H. Design and analysis of an MST-hased topology control algorithm[ J]. IEEE Trans. on W'n'eless Communications,2005,4(3) : 1195 - 1206.
  • 9Liu C,Wu K, Xiao Y, Sun B. Random coverage with guaranteed connectivity: joint scheduling for wireless sensor networks [ J].IEEE Trans. on Parallel and Distributed Systems (TPDS), 2006, 17(6) :562 - 575.
  • 10Zhao Q, Gurusamy M. Lifetime maximization for connected target coverage in wireless sensor networks[ J]. IEEE/ACM Trans. on Networking,2008,16(6) : 1378 - 1391.

共引文献98

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部