期刊文献+

采用立体标定板的鱼眼相机快速标定方法 被引量:3

Fast fisheye camera calibration method using stereoscopic calibration board
下载PDF
导出
摘要 针对目前鱼眼相机标定过程繁琐的问题,进行了鱼眼相机快速标定方法的研究。设计了一种由三块黑白棋盘组成、带有红色边界线的立体标定板;对标定图像依据棋盘所属平面进行图像分割,并对每部分分别检测角点,建立二维图像坐标与三维世界坐标的映射;选用折反射成像模型,提出了适用于立体标定法的参数求解方法。进行了该立体标定法与常用平面多图标定法的对比实验,通过图像畸变校正效果和图像坐标逆投影至世界坐标的精度,验证标定精度。实验表明:立体标定法可以实现与平面多图标定方法同样高的标定精度,且具有较好的鲁棒性;同时该标定法极大简化了标定操作流程,缩短了标定时间。 m Aiming at the complexity of current fisheye camera calibration procedures, a study on fast fisheye camera calibration method is carried out in this paper. A stereoscopic calibration board is designed, which comprises three chessboards with red boundaries. After image segmentation according to the planes that different chessboard zones belong to, and running corner detection on each part separately, mapping between 2D image coordinates and 3D world coordinates is achieved. Based on a catadioptric imaging model, a method is introduced to calculate the parameters for stereoscopic calibration. Experiments are conducted to compare this stereoscopic calibration with usual plane-multi-image calibration. The calibration accuracy is evaluated by results of distortion correction and the accuracy of projection from image coordinates to world coordinates. Results indicate that stereoscopic calibration has the same accuracy as that of plane-multi-images calibration and has even greater robustness. Moreover, stereoscopic calibration simplifies the calibration process and shortens the time involved to a great extent.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第11期1594-1599,共6页 Journal of Harbin Engineering University
基金 国家高技术研究发展计划项目(2009AA11Z216) 汽车噪声振动和安全技术国家重点实验室开放基金项目(Q10111922)
关键词 鱼眼相机 成像模型 标定方法 标定可靠性 图像分割 参数优化 fisheye camera imaging model calibration method calibration reliability image segmentation pa-rameter optimization
  • 相关文献

参考文献8

二级参考文献66

  • 1孙凤梅,胡占义.摄像机简化模型对三维重构的影响——分析与实验[J].计算机辅助设计与图形学学报,2005,17(10):2257-2262. 被引量:10
  • 2Marquardt D W.An algorithm for least-squares estimation of nonlinear parameters[J].SIAM Journal of Applied Mathematics, 1963,11 (2):431-441.
  • 3Triggs B.Bundle adjustment--a modern synthesis[C]//Proceedings of the International Workshop on Vision Algorithms : Theory and Practice, 1999 : 298-372.
  • 4Lourakis M I A,Argyros A A.The design and implementation of a generic sparse bundle adjustment software package based on the Levenberg-Marquardt algorithm FORTH-ICS/TR-340[R].2004.
  • 5Levenberg Marquardt algorithrn[EB/OL].(2008-05).http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm.
  • 6Golub G H,van Loan C F.Matrix computations[M].3rd ed.Maryland:Johns Hopkins Univ Press,1996.
  • 7Muhlich M,Mester R.The role of total least squares in motion analysis[C]//LNCS:Proceedings of the European Conference on Computer Vision, 1998:305-321.
  • 8van Huffel S,Vandewalle J.The total least squares problem:Computational aspects and analysis[M].Philadelphia,PA:SIAM Publications, 1991.
  • 9Golub G H,van Loan C F.An analysis of the total least squares problems[J].Siam J Numer Anal, 1980, 17 : 883-893.
  • 10Wei Xu.A note on the scaled total least square problems[J].Linear Algebra and Its Applications,2008,428(2/3):469-478.

共引文献228

同被引文献31

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部