期刊文献+

Probable effects of heat advection on the adjacent environment during oil production at Prudhoe Bay, Alaska

Probable effects of heat advection on the adjacent environment during oil production at Prudhoe Bay, Alaska
下载PDF
导出
摘要 The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coast of northwest North America centered on Prudhoe Bay, the weather stations show significant warming of both the air and the ocean water, resulting in substantial losses in sea ice west of Prudhoe Bay. These changes appeared shortly after the commencement of shipment of oil through the Trans-Alaska Pipeline in 1977, but have now reached a quasi-stable thermal state. Since more than 17 trillion barrels of oil have passed through the pipeline after being cooled by the adjacent air, which in turn, can then result in the melting of the adjacent sea ice, there appears to be a very strong relationship between these events, and a marked lack of correlation with the changes of the content of greenhouse gases in the atmosphere. This contrasts with the IPCC interpretation of the available climatic data, which assumes that the maximum climatic warming at Prudhoe Bay is typical of the entire region and is the result of increasing greenhouse gases. Engineers need to consider heat advection by oil or gas from underground when designing pipeline facilities, and to take account of the potential environmental con-sequences that they may cause. The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coast of northwest North America centered on Prudhoe Bay, the weather stations show significant warming of both the air and the ocean water, resulting in substantial losses in sea ice west of Prudhoe Bay. These changes appeared shortly after the commencement of shipment of oil through the Trans-Alaska Pipeline in 1977, but have now reached a quasi-stable thermal state. Since more than 17 trillion barrels of oil have passed through the pipeline after being cooled by the adjacent air, which in turn, can then result in the melting of the adjacent sea ice, there appears to be a very strong relationship between these events, and a marked lack of correlation with the changes of the content of greenhouse gases in the atmosphere. This contrasts with the IPCC interpretation of the available climatic data, which assumes that the maximum climatic warming at Prudhoe Bay is typical of the entire region and is the result of increasing greenhouse gases. Engineers need to consider heat advection by oil or gas from underground when designing pipeline facilities, and to take account of the potential environmental con-sequences that they may cause.
出处 《Research in Cold and Arid Regions》 CSCD 2016年第6期451-460,共10页 寒旱区科学(英文版)
关键词 Prudhoe Bay mean annual air temperature heat advection due to oil Arctic ice cover Trans-Alaska Pipeline greenhouse gases Arctic marine ecosystems Prudhoe Bay mean annual air temperature heat advection due to oil Arctic ice cover Trans-Alaska Pipeline greenhouse gases Arctic marine ecosystems
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部