期刊文献+

Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars 被引量:5

Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars
原文传递
导出
摘要 Rice is a well-known silicon accumulator. During its periods of growth, a great number of phytoliths are formed by taking up silica via the plant roots. Concurrently, carbon in those phytoliths is sequestrated by a mechanism of long-term biogeochemical processes within the plant. Phytolith occluded C (PhytOC) is very stable and can be retained in soil for longer than a millennium. In this study, we evaluated the carbon bio- sequestration within the phytoliths produced in rice seed husks of 35 rice cultivars, with the goal of finding rice cultivars with relatively higher phytolith carbon sequestra- tion efficiencies. The results showed that the phytolith contents ranged from 71.6 mg. g^-1 to 150.1 mg. g^-1, and the PhytOC contents ranged from 6.4 mg.g^-1 to 38.4 mg.g^-1, suggesting that there was no direct correlation between the PhytOC content and the content of rice seed husk phytoliths (R = 0.092, p 〉 0.05). Of all rice cultivars, six showed a higher carbon sequestration efficiency in phytolith seed husks. Additionally, the carbon bio- sequestration within the rice seed husk phytoliths was approximately 0.45-3.46 kg-e-CO2-ha^-1. yr^-1. These rates indicate that rice cultivars are a potential source of carbon biosequestration which could contribute to the global carbon cycle and climate change. Rice is a well-known silicon accumulator. During its periods of growth, a great number of phytoliths are formed by taking up silica via the plant roots. Concurrently, carbon in those phytoliths is sequestrated by a mechanism of long-term biogeochemical processes within the plant. Phytolith occluded C (PhytOC) is very stable and can be retained in soil for longer than a millennium. In this study, we evaluated the carbon bio- sequestration within the phytoliths produced in rice seed husks of 35 rice cultivars, with the goal of finding rice cultivars with relatively higher phytolith carbon sequestra- tion efficiencies. The results showed that the phytolith contents ranged from 71.6 mg. g^-1 to 150.1 mg. g^-1, and the PhytOC contents ranged from 6.4 mg.g^-1 to 38.4 mg.g^-1, suggesting that there was no direct correlation between the PhytOC content and the content of rice seed husk phytoliths (R = 0.092, p 〉 0.05). Of all rice cultivars, six showed a higher carbon sequestration efficiency in phytolith seed husks. Additionally, the carbon bio- sequestration within the rice seed husk phytoliths was approximately 0.45-3.46 kg-e-CO2-ha^-1. yr^-1. These rates indicate that rice cultivars are a potential source of carbon biosequestration which could contribute to the global carbon cycle and climate change.
出处 《Frontiers of Earth Science》 SCIE CAS CSCD 2016年第4期683-690,共8页 地球科学前沿(英文版)
基金 Acknowledgements This work was partially supported by the National Natural Science Foundation of China (Grant No. 41271208), the JiangsuPlanned Projects for Postdoctoral Research Funds (No. 1301061C), the China Postdoctoral Science Foundation funded project (No. 2013M541744), and the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2013BADllB00). We also express our sincere thanks to Ms. Yanan Zhang and Ms. Yilan Liu for their kind help with the sampling.
关键词 carbon sequestration seed husks PhytOC phytolith rice cultivars carbon sequestration, seed husks, PhytOC,phytolith, rice cultivars
  • 相关文献

参考文献4

二级参考文献19

共引文献57

同被引文献99

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部