摘要
The research on the mechanism of pile-soil-cap-goaf interaction and settlement of high-speed railway bridge located in mined-out area is still relatively rare. By taking the pile group of Guanshandi bridge foundation in Hefei- Fuzhou high-speed railway as the prototype, a model test is carried out. According to the similarity theory, the similar constant is derived and the similar model material is determined. Meanwhile, three types of data including the bearing behavior of piles, and the settlement law, and soil among piles are investigated. It can be found that: the influence of goaf on the bearing capacity of pile is inversely to the loading degree, the larger of loading degree, the smaller impact of goaf on the bearing capacity. There is no negative side friction can been found in pile body and the degree of downward tendency for the barycenter of side friction layout is obvious for piles in goaf. Although the bearing ratio of soil resistance under cap is relatively large, the cap effect is suggested be ignored considering the characteristic of goaf. There is a maximum critical value for the uneven settlement of pile group in goaf, and when the value is reached, the uneven settlement stop growing anymore. In addition, the formula for calculating bearing capacity and settlement of pile group in goaf based on test results, theory analysis and related standard is established.
The research on the mechanism of pile-soil-cap-goaf interaction and settlement of high-speed railway bridge located in mined-out area is still relatively rare. By taking the pile group of Guanshandi bridge foundation in Hefei- Fuzhou high-speed railway as the prototype, a model test is carried out. According to the similarity theory, the similar constant is derived and the similar model material is determined. Meanwhile, three types of data including the bearing behavior of piles, and the settlement law, and soil among piles are investigated. It can be found that: the influence of goaf on the bearing capacity of pile is inversely to the loading degree, the larger of loading degree, the smaller impact of goaf on the bearing capacity. There is no negative side friction can been found in pile body and the degree of downward tendency for the barycenter of side friction layout is obvious for piles in goaf. Although the bearing ratio of soil resistance under cap is relatively large, the cap effect is suggested be ignored considering the characteristic of goaf. There is a maximum critical value for the uneven settlement of pile group in goaf, and when the value is reached, the uneven settlement stop growing anymore. In addition, the formula for calculating bearing capacity and settlement of pile group in goaf based on test results, theory analysis and related standard is established.