摘要
本文引入两个以de Sitter空间为模型的非齐性坐标来覆盖共形空间Q_1^(m+1).利用球面S^(m+1)中超曲面的M?bius几何的方法,本文研究了Q_1^(m+1)中正则类空超曲面的共形几何.作为其结果,本文对所有具有平行Blaschke张量的正则类空超曲面进行了完全分类.
In this paper,we introduce two conformal non-homogeneous coordinate systems.Modeled on the de Sitter space S1m+1,we cover the conformal space Q1m+1.The conformal geometry of regular space-like hypersurfaces in Q1m+1 can be treated as in the Mobius geometry of hypersurfaces in the sphere Sm+1.As a result,we give a complete classification of the regular space-like hypersurfaces with parallel Blaschke tensors.
作者
李兴校
宋虹儒
LI Xing-xiao SONG Hong-ru(School of Mathematics and Science Information, Henan Normal University, Xinxiang 453007, Chin)
出处
《数学杂志》
CSCD
北大核心
2016年第6期1183-1200,共18页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(11171091
11371018)