期刊文献+

Key genes expressed in different stages of spinal cord ischemia/reperfusion injury ischemia/reperfusion injury 被引量:10

Key genes expressed in different stages of spinal cord ischemia/reperfusion injury ischemia/reperfusion injury
下载PDF
导出
摘要 The temporal expression of microRNA after spinal cord ischemia/reperfusion injury is not yet fully understood. In the present study, we established a model of spinal cord ischemia in Sprague-Dawley rats by clamping the abdominal aorta for 90 minutes, before allowing reperfusion for 24 or 48 hours. A sham-operated group underwent surgery but the aorta was not clamped. The damaged spinal cord was removed for hematoxylin-eosin staining and RNA extraction. Neuronal degeneration and tissue edema were the most severe in the 24- hour reperfusion group, and milder in the 48-hour reperfusion group. RNA amplification, labeling, and hybridization were used to obtain the microRNA expression profiles of each group. Bioinformatics analysis confirmed tour differentially expressed microRNAs (miR-22-3p, miR-743b-3p, miR-201-5p and miR-144-5p) and their common target genes (Tmem69 and Cxcll0). Compared with the sham group, miR- 22-3p was continuously upregulated in all three ischemia groups but was highest in the group with 11o reperfusion, whereas miR-743b-3p, miR-201-5p and miR-144-5p were downregulated in the three ischemia groups. We have successfully identified the key genes expressed at different stages of spinal cord ischemia/reperfusion injury, which provide a reference for future investigations into the mechanism of spinal cord injury. The temporal expression of microRNA after spinal cord ischemia/reperfusion injury is not yet fully understood. In the present study, we established a model of spinal cord ischemia in Sprague-Dawley rats by clamping the abdominal aorta for 90 minutes, before allowing reperfusion for 24 or 48 hours. A sham-operated group underwent surgery but the aorta was not clamped. The damaged spinal cord was removed for hematoxylin-eosin staining and RNA extraction. Neuronal degeneration and tissue edema were the most severe in the 24- hour reperfusion group, and milder in the 48-hour reperfusion group. RNA amplification, labeling, and hybridization were used to obtain the microRNA expression profiles of each group. Bioinformatics analysis confirmed tour differentially expressed microRNAs (miR-22-3p, miR-743b-3p, miR-201-5p and miR-144-5p) and their common target genes (Tmem69 and Cxcll0). Compared with the sham group, miR- 22-3p was continuously upregulated in all three ischemia groups but was highest in the group with 11o reperfusion, whereas miR-743b-3p, miR-201-5p and miR-144-5p were downregulated in the three ischemia groups. We have successfully identified the key genes expressed at different stages of spinal cord ischemia/reperfusion injury, which provide a reference for future investigations into the mechanism of spinal cord injury.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第11期1824-1829,共6页 中国神经再生研究(英文版)
基金 supported by a Grant from the National Natural Science Foundation of China,No.81350013,31572217,and 81672263
关键词 nerve regeneration spinal cord injury ischemia/reperfusion injury mRNA MICRORNA BIOINFORMATICS Tmem69 CXCL10 TRANSCRIPTOME microRNA arrays neural regeneration nerve regeneration spinal cord injury ischemia/reperfusion injury mRNA microRNA bioinformatics Tmem69 Cxcl10 transcriptome microRNA arrays neural regeneration
  • 相关文献

同被引文献50

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部