期刊文献+

Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire

Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire
下载PDF
导出
摘要 A polarization splitter based on dual-core soft glass photonic crystal fiber (PCF) filled with micron-scale gold wire is proposed. The characteristics of the polarization splitter are studied by changing the structural parameters of the PCF and the diameter of the gold wire with the finite element method (FEM). The simulation results reveal that the coupling length ratio of the soft glass-based PCF is close to 2 and the corresponding curve is more fiat than that of the silica-based PCE The broadband bandwidth is 226 nm in which the extinction ratio is lower than -20 dB by the soft glass-based PCE i.e., from 1465 nm to 1691 nm which is competitive in the reported polarization splitters, and the bandwidth is just 32 nm by the silica-based PCE The insertion loss by our polarization splitter is just 0.00248 dB and 0.43 dB at the wavelength of 1.47 μm and 1.55 μm. The birefringence is obviously increased and the coupling length is decreased by filling gold wire into the soft glass-based or the silica-based PCE Also the birefringence based on the silica-based PCF is much larger than that based on the soft glass-based PCF whether or not the gold wire is introduced. The fabrication tolerance of the polarization splitter is also considered by changing the structural parameters. The polarization splitter possesses broad bandwidth, low insertion loss, simple structure and high fabrication tolerance. A polarization splitter based on dual-core soft glass photonic crystal fiber (PCF) filled with micron-scale gold wire is proposed. The characteristics of the polarization splitter are studied by changing the structural parameters of the PCF and the diameter of the gold wire with the finite element method (FEM). The simulation results reveal that the coupling length ratio of the soft glass-based PCF is close to 2 and the corresponding curve is more fiat than that of the silica-based PCE The broadband bandwidth is 226 nm in which the extinction ratio is lower than -20 dB by the soft glass-based PCE i.e., from 1465 nm to 1691 nm which is competitive in the reported polarization splitters, and the bandwidth is just 32 nm by the silica-based PCE The insertion loss by our polarization splitter is just 0.00248 dB and 0.43 dB at the wavelength of 1.47 μm and 1.55 μm. The birefringence is obviously increased and the coupling length is decreased by filling gold wire into the soft glass-based or the silica-based PCE Also the birefringence based on the silica-based PCF is much larger than that based on the soft glass-based PCF whether or not the gold wire is introduced. The fabrication tolerance of the polarization splitter is also considered by changing the structural parameters. The polarization splitter possesses broad bandwidth, low insertion loss, simple structure and high fabrication tolerance.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期300-307,共8页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.61178026,61475134,and 61505175)
关键词 photonic crystal fiber polarization splitter extinction ratio photonic crystal fiber, polarization splitter, extinction ratio
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部