期刊文献+

Tunable in-plane spin orientation in Fe/Si(557) film by step-induced competing magnetic anisotropies

Tunable in-plane spin orientation in Fe/Si(557) film by step-induced competing magnetic anisotropies
下载PDF
导出
摘要 the spin-reorientation transition from out-of-plane to in-plane in Fe/Si film is widely reported, the tuning of in-plane spin orientation is not yet well developed. Here, we report the thickness-, temperature- and Cu-adsorptioninduced in-plane spin-reorientation transition processes in Fe/Si (557) film, which can be attributed to the coexistence of two competing step-induced uniaxial magnetic anisotropies, i.e., surface magnetic anisotropy with magnetization easy axis perpendicular to the step and volume magnetic anisotropy with magnetization easy axis parallel to the step. For Fe film thickness smaller than 32 monolayer (ML), the magnitudes of two effects under various temperatures are extracted from the thickness dependence of uniaxial magnetic anisotropy. For Fe film thickness larger than 32 ML, the deviation of experimental results from fitting results is understood by the strain-relief-induced reduction of volume magnetic anisotropy. Additionally, the surface and volume magnetic anisotropies are both greatly reduced after covering Cu capping layer on Fe/Si (557) film while no significant influence of NaC1 capping layer on step-induced magnetic anisotropies is observed. The experimental results reported here provide various practical methods for manipulating in-plane spin orientation of Fe/Si films and improve the understanding of step-induced magnetic anisotropies. the spin-reorientation transition from out-of-plane to in-plane in Fe/Si film is widely reported, the tuning of in-plane spin orientation is not yet well developed. Here, we report the thickness-, temperature- and Cu-adsorptioninduced in-plane spin-reorientation transition processes in Fe/Si (557) film, which can be attributed to the coexistence of two competing step-induced uniaxial magnetic anisotropies, i.e., surface magnetic anisotropy with magnetization easy axis perpendicular to the step and volume magnetic anisotropy with magnetization easy axis parallel to the step. For Fe film thickness smaller than 32 monolayer (ML), the magnitudes of two effects under various temperatures are extracted from the thickness dependence of uniaxial magnetic anisotropy. For Fe film thickness larger than 32 ML, the deviation of experimental results from fitting results is understood by the strain-relief-induced reduction of volume magnetic anisotropy. Additionally, the surface and volume magnetic anisotropies are both greatly reduced after covering Cu capping layer on Fe/Si (557) film while no significant influence of NaC1 capping layer on step-induced magnetic anisotropies is observed. The experimental results reported here provide various practical methods for manipulating in-plane spin orientation of Fe/Si films and improve the understanding of step-induced magnetic anisotropies.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期435-440,共6页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant Nos.2015CB921403 and 2016YFA0300701) the National Natural Sciences Foundation of China(Grant Nos.51427801,11374350,11274360,and 11274361)
关键词 Fe/Si (557) films spin-reorientation transition competing magnetic anisotropies Fe/Si (557) films, spin-reorientation transition, competing magnetic anisotropies
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部