期刊文献+

Ridge-Forward Quadratic Discriminant Analysis in High-Dimensional Situations

Ridge-Forward Quadratic Discriminant Analysis in High-Dimensional Situations
原文传递
导出
摘要 Quadratic discriminant analysis is a classical and popular classification tool,but it fails to work in high-dimensional situations where the dimension p is larger than the sample size n.To address this issue,the authors propose a ridge-forward quadratic discriminant(RFQD) analysis method via screening relevant predictors in a successive manner to reduce misclassification rate.The authors use extended Bayesian information criterion to determine the final model and prove that RFQD is selection consistent.Monte Carlo simulations are conducted to examine its performance.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第6期1703-1715,共13页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11401391
关键词 Extended BIC quadratic discriminant analysis ridge-forward selection consistency. 判别分析 高维 贝叶斯信息准则 蒙特卡洛模拟 样本大小 误判率 作者 维数
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部