期刊文献+

飞秒激光制备航空用铝靶材表面润湿功能微纳结构的研究 被引量:5

Femtosecond Laser Fabricate Wetting Function Micro-and Nanostructure on Aerial Aluminum Alloys Surface
下载PDF
导出
摘要 近年来,飞行器润湿功能外壳防冰技术以其不消耗能源、几乎不增加额外体积和质量等优点备受世界各国科学家及工程师的关注。铝合金材料一直广泛的应用于民用飞行器,特别是飞机外壳和骨架,然而原有外壳材料表面润湿特性表现中庸。通过飞秒激光微纳结构制备技术,可以有效改变其表面的润湿特性。利用飞秒激光在不同实验条件下,制备了两种典型的微纳复合结构,实验结果表明,柱型微纳结构以独特的双尺寸复合结构所提供的空气气模实现了表面超疏水特性。而沟槽型微纳结构以开放腔毛细管效应为原动力,使其展现了超亲水特性,并具备定向输水功能。这些润湿功能的实现对航空飞行器防冰技术的发展有着重要的应用意义。 Over the years,aircraft's wetting function surface anti-icing technology receives much concern because of its many advantages such as not consuming energy and almost no additional volume and quality. Aluminum alloy has been used in civil aircraft widely,especially in shell and skeleton of aircraft. However,the wetting characteristics of original shell's surface don't have an excellent performance. It can effectively change the wetting properties of the surface by femtosecond laser-induced micro- and nanostructures preparation technology. In this paper,we prepared two kinds of typical micro- and nano-multiple structures. Experimental results show that,columnar micro- and nanostructures can achieve the super-hydrophobic surface property caused by the air provided by special double size multi-structure. Moreover, trench like micro- and nanostructures make the surface show the super-hydrophilic properties powered by the open cavity capillary effect,and have orientation water delivery function. The realization of these wetting functions has important significance in application for the development of spacecraft anti-icing technology.
出处 《长春理工大学学报(自然科学版)》 2016年第5期25-29,50,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然基金青年项目(61605017) 长春市科技计划项目(14KP007) 长春理工大学青年科学基金项目(XQNJJ-2015-01)
关键词 飞秒激光 微纳结构 润湿功能 防冰 femtosecond laser micro-and nanostructures wetting anti-icing
  • 相关文献

参考文献3

二级参考文献34

  • 1钱柏太,沈自求.控制表面氧化法制备超疏水CuO纳米花膜[J].无机材料学报,2006,21(3):747-752. 被引量:32
  • 2A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, Appl. Phys. Lett. 95, 121106 (2009).
  • 3H. Tao, J. Lin, Z. Hao, X. Gao, X. Song, C. Sun, and X. Tan, Appl. Phys. Lett. 100, 201111 (2012).
  • 4T. Y. Hwang, A. Y. Vorobyev, and C. Guo, Opt. Express 19, A824 (2011).
  • 5A. Y. Vorobyev and C. Guo, Adv. Mech. Eng. 2010, 452749 (2010).
  • 6P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2003).
  • 7B. B. Bhushan, Y. C. Jung, and K. Koch, Phil. Trans. Roy. Soc. A 367, 1631 (2009).
  • 8Z. Guo, W. Liu, and B. Su, Appl. Phys. Lett. 92, 063104 (2008).
  • 9D. Wang, X. Wang, X. Liu, andF. Zhou, J. Phys. Chem. C 114, 9938 (2010).
  • 10S. Shibuichi, T. Yamamoto, T. Onda, and K. Tsujii, J. Colloid Inter- face Sci. 208, 287 (1998).

共引文献8

同被引文献68

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部