摘要
梯度投影法是一种求解约束优化问题的经典算法.它具有单步计算量低等优点,但其效率受步长规则影响较大.本文提出的一种新的自适应步长规则的梯度投影法.该算法一方面,它无需函数值信息;另一方面,它的步长接受规则比Armijo规则更为宽松,因而可以接受较长的步长以加速收敛.初步的数值实验表面新算法较为高效.
Gradient Projection method is a classic algorithm for solving constrained optimization. It takes the advantage of its low per-iteration cost. However, its efficiency can be affected by the choice of step size. In this paper, we propose a new Gradient Projection method with self-adaptive step size rule. On the hand, it does not need the information of objective; on the other hand, it can accept longer step size than that based on Armijo rule to accelerate the convergence. Our preliminary experimental results show that it is an efficient algorithm.
出处
《数值计算与计算机应用》
CSCD
2016年第4期307-314,共8页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金青年项目(11401295)
江苏省自然科学基金青年项目(BK20141007)
江苏省社会科学基金青年项目(14EUA001)
江苏省高校自然科学研究面上项目(13KJD11002)