摘要
研究了具有积分边界条件的n阶Sturm-Liouville边值问题{x(n)(t)=f(t,x(t),x'(t),…,x(n-1)(t)),t∈[0,1],x(i)(0)=0,i=0,1,…,n-3,1x(n-2)(0)-ax(n-1)(0)=∫h0(s,x(s),x'(s),…,x(n-2)(s))ds,x(n-2)(1)+bx(n-1)(1)=∫h1(s,x(s),x'(s),…,x(n-2)(s))ds解的存在性,其中f∈C([0,1]×Rn),hn0,h1∈C([0,1]×R-1)并且a,b≥0为常数,利用关于两个算子和的O’Regan不动点定理,得到了上述边值问题解的存在性.
We investigated the existence of solutions for n-order Sturm-Liouville boundary value problems with integral boundary conditions {x(n)(t)=f(t,x(t),x'(t),…,x(n-1)(t)),t∈[0,1],x(i)(0)=0,i=0,1,…,n-3,1x(n-2)(0)-ax(n-1)(0)=∫h0(s,x(s),x'(s),…,x(n-2)(s))ds,x(n-2)(1)+bx(n-1)(1)=∫h1(s,x(s),x'(s),…,x(n-2)(s))ds where f∈C([0,1]×Rn),hn0,h1∈C([0,1]×R-1) and a,b≥0 are constants. By using a fixed point theorem for the sum of two operators due to O' Regan, the existence of solutions for the above boundary value problems are obtained.
出处
《北华大学学报(自然科学版)》
CAS
2016年第6期708-713,共6页
Journal of Beihua University(Natural Science)
基金
吉林省教育厅科学技术研究项目(2016-45)
关键词
高阶边值问题
存在性
积分边界条件
NAGUMO条件
higher order boundary value problem
existence
integral boundary condition
Nagumo condition