期刊文献+

Criegee中间体CH_3CHOO与H_2O反应机理及酸催化效应 被引量:2

Reaction Mechanism of Criegee Intermediate CH_3CHOO with H_2O and the Acid Catalytic Effect
下载PDF
导出
摘要 采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了H2O及甲酸等6种有机酸对CH3CHOO与H2O加成反应的催化作用。结果表明,非催化反应存在双质子迁移和加成反应2条通道,其中加成反应为优势通道。其加成机理为H2O中OH加到CH3CHOO的α-C上,同时H2O中另一个H迁移到CH3CHOO的端O上。催化剂H2O及有机酸以氢键复合物的形式参与反应促进了H质子转移,可降低基元反应能垒和表观活化能,且催化效应与有机酸的强度成正比。例如,当分别用H2O(p Ka=15.7)、甲酸(p Ka=3.75)和草酸(p Ka=1.23)催化时,生成syn-HAHP的基元反应能垒由非催化的69.12 k J?mol-1分别降至40.78、18.88和10.61 k J?mol-1。非催化反应具有正的表观活化能,而所有催化反应则均具有负的表观活化能。 The catalytic effect of H2O and six kinds of organic acids (e.g., formic acid) on the reaction of CH3CHOO with H2O is studied at the CCSD(T)//B3LYP/6-311+G(d,p) level. The results reveal that two possible channels exist as the double proton transfer and addition, of which the latter dominates for the non-catalytic reactions. For the additions, the OH of water is added to the α-C of CH3CHOO, and the H atoms migrate to the end oxygen atoms. Catalysts such as H2O and organic acid can form a hydrogen-bonded complex with CH3CHOO, which promotes the H transfer and thus significantly reduces the elementary reaction energy barrier and apparent activation energy when compared with that of the non-catalytic reaction. The catalytic effect is proportional to the strength of the organic acids. For example, for the formation of syn-HAHP catalyzed by H2O (pK, = 15.7), formic acid (pK, = 3.75) and oxalic acid (pKa = 1.23), the energy barrier is reduced from 69.12 to 40.78, 18.88 and 10.61 k J·mol -1, respectively. In addition, the non-catalytic reaction has a positive activation energy, whereas the catalytic reactions have an negative apparent activation energy.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第12期2898-2904,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21473108 21473107) 陕西省重点科技创新团队基金(2013KCT-17) 中央高校基本科研业务费专项资金(JK201601005)资助项目~~
关键词 Criegee中间体 CH3CHOO 酸催化 加成反应 Criegee intermediate CH3CHOO Acid catalysis Addition reaction
  • 相关文献

参考文献2

二级参考文献53

  • 1Crigree, R. Rev. Chem. Prog. 1957, 18, 111.
  • 2Neeb, P.; Horie, O.; Moortgat, G. K. J. Phys. Chem. A 1998, 102, 6778.
  • 3Mihelcic, D.; Heitlinger, M.; Kley, D. J. Chem. Phys. Lett. 1999, 301,559
  • 4Martinez, R. I.; Herron, J. T.; Huie, R. E. J. Am. Chem. Soc. 1981, 103, 3807.
  • 5Becker, K. H.; Brockmann, K. J.; Bechara, J. Nature 1990, 346, 256.
  • 6Neeb, P.; Sauer, F.; Horie, O.; Moortgat, G. K. Atmos. Environ. 1997, 31, 1417.
  • 7Wolff, S.; Boddenberg, A.; Thamm, J.; Turner, W. V.; Gab, S. Atmos. Environ. 1997, 31, 2965.
  • 8Sauer, F.; Schaer, C.; Neeb, P.; Horie, O.; Moortgat, G. K. Atmos. Environ. 1999, 33, 229.
  • 9Hatakeyama, S.; Akimoto, H. Res. Chem. Intermed. 1994, 20, 503.
  • 10Marklund, A. S. Biochem. Biophys. 1973, 154, 614.

共引文献7

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部