期刊文献+

利用金属辅助化学腐蚀法在硅表面获得纳米绒面结构以提升多晶硅太阳电池效率

Nano-texturing of Silicon Surface via Metal-assisted Chemical Etching to Improve Efficiency of Polycrystalline Silicon Solar Cell
下载PDF
导出
摘要 在硅片表面制备绒面结构能够有效降低太阳光在硅片表面的反射损失,是提高太阳能电池转换效率的一条重要途径。通过真空热蒸发法在多晶硅片上沉积纳米银颗粒,利用金属辅助化学腐蚀(MACE)法,制备了不同腐蚀时间下的纳米绒面结构,其中,腐蚀时间为60 s 的纳米绒面的平均反射率低至4.66%(300~1100 nm)。同时,对腐蚀时间为60 s的纳米绒面用KOH 溶液进行优化处理,将KOH 处理前后的多晶硅片采用常规电池工艺进行电池制备研究。对比发现,经过KOH 处理后的电池效率比未经KOH 处理的电池效率提高了0.43%。 Texturizing a silicon wafer is effective in driving down solar reflection loss on the wafer surface,thus providing an important way of improving solar cell conversion efficiency.Vacuum evaporation was used to deposit nano-silver particles on polycrystalline wafers,and nano-textured surfaces with various etching times were prepared and studied by means of metal-assisted chemical etching (MACE)technique.Specifically,the nano-textured surface with an etching time of 60 s produced a mean reflectivity as low as 4.66% (300-1100 nm).The nano-textured sur-faces with 60 s etching time were further processed using KOH solution for optimization.Cells were fabricated by con-ventional fabricating process,using wafers with or without KOH processing respectively,and the comparative analy-ses confirmed a 0.43% higher efficiency of the cells with KOH processing compared to those without.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第22期1-4,共4页 Materials Reports
基金 国家自然科学基金(61176055)
关键词 纳米绒面 多晶硅 金属辅助化学腐蚀 太阳电池 nano-textured surface polycrystalline silicon metal-assisted chemical etching solar cell
  • 相关文献

参考文献1

二级参考文献15

  • 1吴茵,胡崛隽,许颖,彭奎庆,朱静.硅纳米线阵列的制备及其光伏应用[J].太阳能学报,2006,27(8):811-818. 被引量:13
  • 2Zhao Jianhua, Wang Aihua, Green Martin A. 24 center dot 5% efficiency silicon PERT cells on MCZ substrates and 24 center dot 7% efficiency PERL cells on FZ substrates[J]. Progress Photovohaics, 1999, 7(6) : 471 -474.
  • 3Bessonov A, Cho Y, Jung S J, et al. Nanoimprint patterning for tunable light trapping in large-area silicon solar cells [J]. Solar Energy Materials & Solar Cells, 2011, 95(10) : 2886-2892.
  • 4Shi Enzheng, Li Hongbian, Long Yang, et al. Colloidal antire flection coating improves graphene-silicon solar cells[J]. Nano Letter, 2013, 13(4) : 1776-1781.
  • 5Hu Lu, Chen Gang. Analysis of optical absorption in silicon nanowire arrays for photovoltaie applications [J]. Nano Letter, 2007, 7( 11 ) : 3249-3252.
  • 6Wangyang Peihua, Wang Qingkang, Wan Xia, et al. Optical absorption enhancement in silicon square nanohole and hybrid square nanowire-hole arrays for photovoltaic applications[J]. Optics Communication, 2013, 294: 377-383.
  • 7Peng Kuiqing, Xu Ying, Wu Yin, et al. Aligned single- crystalline Si nanowire arrays for photovoltaieapplications[J]. Small, 2005, 1(11): 1062.
  • 8Kumar D, Srivastava S K, Singh P K, et al. Fabrication of silicon nanowire arrays based solar cell with improved performance [J]. Solar Energy Materials & Solar Cells, 2011, 95(1): 215-218.
  • 9Oh J, Yuan H C, Branz H M. An 18.2%-efficient black- silicon solar cell achieved through control of carrier recombination in nanostructures [J]. Nature Nanotechnology, 2012, 7(11) : 743-748.
  • 10Peng Kuiqing, Yan Y J, Gao S P, et al. Synthesis of large-area silicon nanowire arrays via self-assemblingnanoelectrochemistry [ J ]. Advanced Materials, 2002, 14 (16): 1164-1167.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部