期刊文献+

互联网宏观拓扑的社团发现

Community Detecting of Internet Macroscopic Topology
下载PDF
导出
摘要 自然界中存在的大量复杂系统都可以通过复杂网络加以描述,社团结构是继小世界特性和无标度特性之后发现的最为重要的复杂网络特性。社团发现对理解互联网的宏观拓扑结构至关重要。针对互联网宏观拓扑的结构特性,基于边聚簇算法思想,设计了一个基于路由特征的社团发现算法,以互联网宏观拓扑中的探测边频为影响因子定义边相似性,改造边聚簇算法中的关键聚簇过程,以发现互联网宏观拓扑中的社团结构。实验结果表明,所提算法与原算法相比,具有更高的分割密度。进一步以边介数替代探测边频,将该算法应用在其它类型网络中,同样取得了较好的效果。 A large number of complex systems in nature can be described by complex networks.Community structure is the most important feature of complex networks following the small-world and scale-free features.Community detecting is very important for understanding the macroscopic topology structure of Internet.Aimed at the structure features of the macroscopic topology of Internet,based on link clustering method,we proposed a community detecting algorithm which redefines link similarity with routing features to transform the link clustering process.It gives a better community structure in Internet macroscopic topology.It is further applied into other networks of different types by using link betweenness instead of link frequency,and better community structure can be gotten.
出处 《计算机科学》 CSCD 北大核心 2016年第11期148-151,共4页 Computer Science
基金 国家自然科学基金资助项目(60973022)资助
关键词 复杂网络 社团发现 路由特征 互联网宏观拓扑 Complex network Community detecting Routing features Internet macroscopic topology
  • 相关文献

参考文献4

二级参考文献52

  • 1苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制,2005,34(1):123-125. 被引量:19
  • 2高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 3SCOqT J. Social network analysis[ M]. London: SAGE Publications Ltd. 2012:11-39.
  • 4KAZIENKO P, BRODKA P, MUSIAL K. Individual neighbourhood exploration in complex multi-layered social network [ C ]//Proc of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Washington DC : IEEE Computer Socie- ty, 2010:5-8.
  • 5KAZIENKOP,MUSIALK,KAJDANOWICZT.Multidimensionalsocialnetworkinthesocialrecommendersystem[J].IEEETransonSystems,ManandCybernetics,PartA:SystemsandHumans,2011,41(4):746-759.
  • 6TRAUDAL,MUCHAPJ,PORTERMA.SocialstructureofFacebooknetworks[J].PhysicaA:StatisticalMechanicsandItsApplications,2012,391(16):4165-4180.
  • 7RADICCHIF,CASTELLANOC,CECCONIF,etal.Definingandidentifyingcommunitiesinnetworks[J].ProceedingsoftheNationalAcademyofSciencesoftheUSA,2004,101(9):2658-2663.
  • 8SPAULDINGTJ.Howcanvirtualcommunitiescreatevalueforbusiness[J].ElectronicCommerce Research and Applications,2010,9(1):38-49.
  • 9BR?DKAP,SAGANOWSKIS,KAZIENKOP.Groupevolutiondiscoveryinsocialnetworks[C]//ProcofInternationalConferenceonAdvancesinSocialNetworksAnalysisandMining.2011:247-253.
  • 10ZHAOZhongying,FENGShengzhong,WANGQiang,etal.Topicorientedcommunitydetectionthroughsocialobjectsandlinkanalysisinsocialnetworks[J].KnowledgeBasedSystems,2012,26(2):164-173.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部