期刊文献+

基于用户签到和地理属性的个性化位置推荐算法研究 被引量:5

Personalized Location Recommendation Algorithm Research Based on User Check-ins and Geographical Properties
下载PDF
导出
摘要 针对基于LBSNs(Location-based Social Networks)的位置推荐算法考虑因素单一且不能有效解决用户位于不同城市的位置推荐的问题,综合考虑潜在的社交影响、内容匹配影响和地理属性影响等因素,提出了基于用户签到和地理属性的个性化位置推荐算法SCL(Social-Content-Location)。该算法在协同过滤的基础上,引入了用户兴趣特征比较,改进了用户的相似度计算;同时,在分析位置的内容信息时,融入用户评论,缓解了位置标签的短文本特性对LDA(Latent Dirichlet Allocation)主题提取的影响,提高了用户兴趣和城市偏好主题提取的准确率。实验结果表明,SCL算法在本地城市召回率上较协同过滤算法U提高近65%,较LCA-LDA算法提高近30%;在异地城市召回率上,高于LCA-LDA算法近26%。这表明SCL算法在不同城市下的位置推荐具有一定的可行性。 Since the consideration of location recommendation algorithms based on LBSNs (Location-Based Social Networks) is too single, and it couldn't effectively solve the problem of location recommendation for user in different cities, synthesizing the factors of potential social influence, content match influence and geographical property influence, the personalized location recommendation algorithm SCL (Social-Content-Location) based on user check-ins and geographical properties was proposed. SCL algorithm introduces the comparison of users' interest features based on the collaborative filtering,and it improves the similarity of users. At the same time,when the content information of location is analyzed, user's comments on location is integrated, and it alleviates the influence of the short text feature of location labels to LDA (Latent Dirichlet Allocation) topic extraction and improves the accuracy of user's interest and city pre- ference topic in extraction. The experimental results show that, for the recall rate of residence city, algorithm SCL outperforms collaborative filtering algorithm U near 65 %, and outperforms algorithm LCA-LDA near 30%. For the recall rate of new city, algorithm SCL outperforms algorithm LCA-LDA near 26%, which shows that algorithm SCL has certain feasibility for location recommendation under different cities.
出处 《计算机科学》 CSCD 北大核心 2016年第12期163-167,178,共6页 Computer Science
基金 国家自然科学基金(61379158 61502062) 科技支撑计划(2014BAH25F01) 重庆市科技计划项目(cstc2014jcyjA40054)资助
关键词 潜在社交影响 内容匹配影响 地理属性影响 协同过滤 LDA主题提取 Potential social influence,Content match influence, Geographical property influence, Collaborative filtering, LDA topic extraction
  • 相关文献

参考文献4

二级参考文献60

  • 1王燕.一种改进的K-means聚类算法[J].计算机应用与软件,2004,21(10):122-123. 被引量:9
  • 2Salton G,Wong A, Yang C S. A Vector Space Model for Auto- matic lndexing[J]. Communications of the ACM, 1975,18: 613- 620.
  • 3Blei D, Ng A, Jordan M. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3 : 993.
  • 4石晶,范猛,李万龙.基于LDA模型的主题分析[J].自动化报,2009,36:1586-1593.
  • 5Wei Xing,Croft W Bo LDA-Based Document Models for Ad-hoc Retrieval[C]//SIGIR' 06. Seattle, WA, USA, August 2006.
  • 6Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classi- fiers[J]. Machine Learning, 1997,2 : 131.
  • 7Doueet A, Godsill S, Andrieu C. On sequential Monte Carlo sam- piing methods for Bayesian filtering[J]. Statistics and Compu- ting,2000,3:197.
  • 8Duda R O, Hart P E, Stork D G. Pattern Classification(2ed)[M].李宏东,姚天翔,等译.机械工业出版社,2003:508.
  • 9Lin J. Divergence measures based on Shannon entropy[J]. IEEE Transactions on Infommtion Theory, 1991,37(14) 145.
  • 10Park M-H, et aI. Location-Based Recommendation System Using Bayesian User's Preference Model in Mobile Devices [C]//Pro- ceedings of the Ubiquitous Intelligence and Computing(UIC). Hong Kong, China, 2007 1130-1139.

共引文献100

同被引文献17

引证文献5

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部