期刊文献+

基于Jaccard相似度和位置行为的协同过滤推荐算法 被引量:20

Collaborative Filtering Recommendation Algorithm Based on Jaccard Similarity and Locational Behaviors
下载PDF
导出
摘要 协同过滤是现今推荐系统中应用最为成功且最广泛的推荐方法之一,其中概率矩阵分解算法作为一类重要的协同过滤方式,能够通过学习低维的近似矩阵进行推荐。然而,传统的协同过滤推荐算法在推荐过程中只利用用户-项目评分信息,忽略了用户(项目)间的潜在影响力,影响了推荐精度。针对上述问题,首先利用Jaccard相似度对用户(项目)做预处理,而后通过用户(项目)间的位置信息挖掘出其间的潜在影响力,成功找到最近邻居集合;最后将该邻居集合融合到基于概率矩阵分解的协同过滤推荐算法中。实验证明该算法较传统的协同过滤推荐算法能够更有效地预测用户的实际评分,提高了推荐效果。 Recently, collaborative filtering is one of the most widely used and successful recommendation technology in recommender system. And probabilistic matrix factorization is an important method of collaborative filtering and it can be recommended by learning the low dimensional approximation matrix. However, the traditional collaborative filtering recommendation algorithm has the disadvantages of using the ratings between users and items only, ignoring the potential impact of the users (items). At last, it affects the recommendation precision. In order to solve the problem, in this paper,we first used the Jaccard similarity to preprocess the users (items), and then dug out the potential impact through the users (items) location information, finding the set of nearest neighbors successfully. Furthermore, those nearest neighbors were successfully applied into the recommendation process based on probabilistic matrix factorization- Experimental results show that compared to traditional collaborative filtering recommendation algorithm, the proposed algorithm can achieve more accurate rating predictions and improve the quality of recommendation.
出处 《计算机科学》 CSCD 北大核心 2016年第12期200-205,共6页 Computer Science
基金 国家自然科学基金(61203072) 江苏省重点研发计划(社会发展)(BE2015697)资助
关键词 Jaccard相似度 位置行为 协同过滤 概率矩阵分解 Jaccard similarity, Locational behaviors, Collaborative filtering, Probabilistic matrix factorization
  • 相关文献

参考文献3

二级参考文献44

  • 1贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:47
  • 2陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 3陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 4Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 5Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 6Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 7Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 8Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 9Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 10Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.

共引文献318

同被引文献127

引证文献20

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部