期刊文献+

一种基于随机森林的LBS用户社会关系判断方法 被引量:8

Random Forests Based Method for Inferring Social Ties of LBS Users
下载PDF
导出
摘要 根据LBS用户位置信息对用户之间是否存在社会关系进行判断,是基于位置大数据的情报挖掘领域中的一个新兴问题,可为群体发现及社团划分提供信息支撑。以时空共现理论为依据,将时空共现区特征归纳为4类,提出了一种基于随机森林的用户社会关系判断方法。该方法包括特征选择和训练分类环节。首先,针对特征空间存在不相关和冗余特征而影响判断性能的问题,提出一种基于Fisher准则和χ2检验的特征选择算法,对无关、冗余特征进行剔除;然后采用随机森林进行分类判断,克服了现有方法训练速度慢、容易过拟合的问题。以LBSN用户Check-in数据为例进行的实验结果表明,该方法能够以较低的计算代价和较高的准确率实现社会关系的判断。 Inferring social ties from the location information of LBS users, which can provide more information for group discovery and community detection, is now becoming a new problem in intelligence mining from location big data. Based on the theory of co-occurrences, the features of co-occurrences region were divided into four categories, and a new method based on random forests for social ties inferring was proposed in this paper. The method consists of feature selec- tion phase and classification phase. Firstly, for the problem that uneorrelatedand redundant features will affect the accuracy of result, an algorithm based on Fisher criterion and Z2 test was proposed to remove the uncorrelated and redundant features. Secondly, random forests was applied in the classification to overcome the problem of existing method that training phase is slow and the model is easily over-fitting. Check-in data of LBSN users is chosen as test data in experiment, the results indicate the feasibility and effectiveness of the method.
机构地区 电子工程学院
出处 《计算机科学》 CSCD 北大核心 2016年第12期218-222,共5页 Computer Science
基金 国防重点实验室基金资助
关键词 基于位置的服务 时空共现 随机森林 社会关系推断 LBS, Spatio-temporal co-occurrences,Random forests, Social ties inferring
  • 相关文献

参考文献2

二级参考文献38

  • 1刘经南.泛在测绘与泛在定位的概念与发展[J].数字通信世界,2011(S1):28-30. 被引量:31
  • 2Hey T, Tansley S, Tolle K M. The fourth paradigm: data-intensive sci- entific discovery. Microsoft Research, 2009.
  • 3Crandall D J, Backstrom L, Cosley D, Suri S, Huttenlocher D, Klein- berg J. Inferring social ties from geographic coincidences. Proceedings of the National Academy of Sciences, 2010, 107(52): 22436-22441.
  • 4Lanw H W, Lim E P, Pang H, Tan T T. Social network discovery by mining spatio-temporal events. Computational & Mathematical Orga- nization Theory, 2005, 11(2): 97-118.
  • 5Lauw H W, Lim E P, Pang H, Tan T T. Stevent: spatio-temporal event model for social network discovery. ACM Transactions on Information Systems (TOISi, 2010, 28(3): 15:1-15:32.
  • 6Milgram S. The experience of living in cities. Science, 1970, 167(3924): 1461-1468.
  • 7Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W Y. Mining user similarity based on location history. In: Proceedings of the 16th ACM SIGSPA- TIAL International Conference on Advances in Geographic Informa- tion Systems. 2008, 34-44.
  • 8Christopher D, Manning P R, Sch ti tze H. Inlxoduction to Information Retrieval. Cambridge University Press, 2008.
  • 9Ye M, Yin E Lee W C. Location recommendation for location-based social networks. In: Proceedings of the 18th SIGSPATIAL Interna- tional Conference on Advances in Geographic Information Systems. 2010, 458461.
  • 10Li N, Chen G. Analysis of a location-based social network. In: Proc- cedings of the 2009 International Conference on Computational Sci- ence and Engineering. 2009, 263-270.

共引文献62

同被引文献103

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部