期刊文献+

一种基于多分类器融合的人体运动行为识别模型 被引量:3

Human Motion Activity Recognition Model Based on Multi-classifier Fusion
下载PDF
导出
摘要 为了提高基于智能设备的人体日常行为识别的准确率,针对不同智能设备内置加速度传感器获取的三轴加速度信息,提出了一种基于多分类器融合的行为识别MCF(Multiple Classifier Fusion)模型。针对5种日常行为(静止、散步、跑步、上楼及下楼),优选出与每种行为相关度高的特征集,用于训练对每种行为识别效果最佳的5个基分类器,并采用一个融合器对5个基分类器的输出进行融合处理,得到最终行为识别结果。该模型对这5种行为的平均识别准确率和可信度分别达到96.84%和97.41%,能有效进行用户行为识别。 To improve the accuracy of human activity recognition based on the triaxial acceleration data from mobile sensors, an activity recognition model based on multiple classifier fusion (MCF) was proposed. The features which are high correlated with each daily activity (staying, walking, running, going upstairs and going downstairs) are extracted from the original acceleration data to generate the five feature data sets to train the five base classifiers. The input of the five base classifiers are these feature data sets, and their output are processed using multi-classifier fusion algorithm to produce the final activity recognition result. The experimental results show that the average activity recognition accuracy and the reliability by using MCF are respectively 96.84% and 97. 41% ,and it can effectively identify human activities.
出处 《计算机科学》 CSCD 北大核心 2016年第12期297-301,共5页 Computer Science
基金 国家自然科学基金资助项目(61373116) 陕西省教育科学"十二五"规划课题(SGH140601) 西安邮电大学校青年基金项目(ZL2014-27)资助
关键词 行为识别 三轴加速度 基分类器 多分类器融合 Activity recognition, Triaxial acceleration, Base classifier, Multi-classifier fusion
  • 相关文献

参考文献6

二级参考文献75

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2侯叶,郭宝龙.基于图切割的人体运动检测[J].光电子.激光,2007,18(6):725-728. 被引量:11
  • 3Ailisto H,Lindholm M,Mantyjarvi J,et al. Identifying users of portable devices from gait pattern with accelerometers [ A ]. IEEE International Conference on Acoustics, Speech, and Signal Processing[ C ]. Philadelphia: IEEE Signal Processing Society, 2005.Ⅱ. 973 - 976.
  • 4Gafurov Davrondzhon, Helkala Kirsi, Sondrol Torkjel. Gait recognition using acceleration from MEMS[ A]. Proceedings of the 1^st Intemational Conference on Availability, Reliability and Security[ C]. Vienna: Imtitute of Electrical and Electronics Engineers Computer Society,2006.432 - 437.
  • 5Mathie M J,CeUer B G,Lovell Nigel H,et al. Classification of basic daily movements using a lriaxial accelerometer[ J] .Medical and Biological Engineering and Computing, 2004, 42 ( 5 ) : 679 - 687.
  • 6D M Karantonis,M R Narayanan, M Mathie, et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring[ J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10( 1 ) : 156 - 167.
  • 7N Ravi,N Dandekar,P Mysore, et al.Activity recognition from accelerometer data[ A ]. Proceedings of the 20^th National Conference on Artificial Intelligence[ C ]. Pittsburgh: American Association for Artificial Intelligence,2005. V3. 1541 - 1546.
  • 8Ohtaki Y, Susumago M, Suzuki A, et al. Automatic classification of ambulatory movements and evaluation of energy consumptions u utilizing accelerometers and a barometer [ J ]. Microsystem Technologies, 2005,11 (8 - 10 ) : 1034 - 1040.
  • 9Masakatsu Kourogi, Takeshi Kurata. Personal positioning based on walking locomotion analysis with self-contained sensors and a wearable camera[ A]. Proceedings of the 2^nd IEEE and ACM International Symposium on Mixed and Augmented Reality [ C]. Tokyo: IEEE Computer Society ,2003. 103 - 112.
  • 10M J Mathie. Monitoring and Interpreting Human Movement Patterns Using a Triaxial Accelerometer [D]. Sydney, Australia: University of New South Wales,2003.

共引文献59

同被引文献17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部