期刊文献+

基于图像处理和稀疏表示的水位识别研究 被引量:4

Research on Water-Level Recognition Based on Image Processing and Spare Representation
下载PDF
导出
摘要 在水位智能识别系统中,采集到的水尺图像可能存在刻度模糊、局部缺失等情况,对水尺识别产生不利影响,针对这一问题提出了一种基于稀疏表示的水位识别方法。该方法利用多幅连续水尺图像对字典进行训练,通过重构残差的比较对样本水尺图像进行分类,根据分类结果计算出水位值。结果表明,该方法对光照变化和局部的遮挡、模糊等具有较强的鲁棒性,可以准确地对水尺兴趣目标图片分类并进行水位计算,计算出的水位与实际水位之间的误差不超过±1 cm。 In the intelligent recognition system of water level,the recognition rate is low due to the water-level ruler image with partial deletion and fuzzy. In order to improve the recognition rate of water level,a novel method which sparse representation based classification was proposed. First,the dictionary was obtained by the number of consecutive water-level ruler images. Then,the water level was acquired through the result of reconstruction residual sample draft classification. The results show that the method is robust to illumination change and partial occlusion,apart from this,it can accurately classify the water level target image and calculate the water level. The calculated error between the water level and the actual water level does not exceed ±1 cm.
出处 《人民黄河》 CAS 北大核心 2016年第12期52-56,共5页 Yellow River
基金 国家"973"计划项目(2013CB328903) 国家自然科学基金资助项目(61403265)
关键词 水位识别 稀疏表示 重构残差 图像识别 water-level recognition sparse representation reconstruction residual image recognition
  • 相关文献

参考文献4

二级参考文献46

  • 1马建伟,赵忠明.一种基于特征点的人工目标变化检测方法[J].郑州大学学报(理学版),2007,39(1):44-48. 被引量:2
  • 2唐敏,姜灵敏,阳爱民.一种基于区域模糊特征的图像检索方法[J].郑州大学学报(理学版),2007,39(2):122-127. 被引量:5
  • 3章毓晋.图像工程:上册图像处理和分析[M].北京:清华大学出版社,1999.
  • 4任明武,杨万扣,王欢,刘治锋,唐振民.一种基于图像的水位自动测量新方法[J].计算机工程与应用,2007,43(22):204-206. 被引量:28
  • 5Rankin A, Matthies L, Huertas A. Daytime water detection by fusing multiple cues for autonomous off-road navigation: ASC 2004[C]//Proceedings of the 24th Army Science Conference. Orlando: IEEE Press, 2004:532-541.
  • 6Sural S,Qian G,Pramanik S. Segmentation and histogram generation using the HSI color space for image retrieval[C]// Proceedings of International Conference on 2002 IROS. Lausanne: IEEE Press, 2002:1045-1049.
  • 7Papamarkea N, Gatos B. A new approach for multilevel threshold selection[J]. Graphical Models and Image Process,1994,56(5):357-370.
  • 8Kass M,Witkin A,Terzopoulo D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4) :321-331.
  • 9Chan T, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2) : 266-277.
  • 10Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(11) : 1222-1239.

共引文献66

同被引文献14

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部