期刊文献+

基于因子分析法的海关风险管理评价分析 被引量:6

On Evaluation of Customs Risk Management on the Basis of Factor Analysis
下载PDF
导出
摘要 近年来,海关风险管理平台、执法评估系统等风险分析系统逐步由理论研究走向实际应用,但依然无法满足海关大量数据的快速挖掘与使用需要,为弥补目前海关已有的研究方法对海关风险管理进行定量综合评价的不足,缓解海关风险管理的过程中缺乏将产生的数据进行科学化分析的局面。文章在现有海关风险管理研究框架的基础上,融入因子分析法,通过实例分析将数据挖掘方法运用到海关工作积累的数据当中,为海关管理决策与风险管理提供帮助。 In recent years,the Customs risk management platform,law enforcement evaluation system and other risk analysis systems have gradually gone beyond the theoretical research and applied in practices. But still those system cannot meet the demand of the Customs data mining and using featuring high volume and velocity. The customs risk management mainly adopts quantitative comprehensive evaluation in existing research methods,and as a result,the data produced in the process of risk management are not sufficiently and scientifically analyzed. In order to offset this shortcoming and inadequacy,this paper introduces factor analysis method into the existing customs risk management research and discusses how to apply data-mining to the data accumulated during the process of customs operations through real cases,so as to shed some light on customs decision-making and risk management.
出处 《海关与经贸研究》 2016年第6期27-42,共16页 Journal of Customs and Trade
关键词 海关风险管理 数据挖掘 因子分析法 Customs Risk Management Data-mining Factor Analysis
  • 相关文献

参考文献5

二级参考文献23

  • 1蒲群莹.基于数据挖掘的竞争情报系统模型[J].情报杂志,2005,24(1):38-39. 被引量:28
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data, 1993, 207-216.
  • 3Han J, Pei J, Yin Y. Mining frequent pattems without candidate generation [C]. Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 00), Dalas, TX, 2000.
  • 4Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very large Database,1995.
  • 5Mannila H, Toivonen H, Verkamo A. Efficient algorithm for discovering association rules[C]. AAAI Workshop on Knowledge Discovery in Databases, 1994.181-192.
  • 6Toivonen H. Sampling large databases for association rules[C].Bombay, India: Proceedings of the 22nd International Conference on Very Large Database, 1996.
  • 7Brin S, Motwani R, Silverstein C. Beyond market baskets: Generlizing association rules to correlations[C]. Proceedings of the ACM SIGMOD, 1996. 255-276.
  • 8Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules[C]. San Jose, CA:Proceedings of ACM SIGMOD International Conference on Management of Data, 1995. 175-186.
  • 9Ng R, Lakshmanan L V S, Han J. Exploratory mining and pruning optimizations of constrained associations rules[C]. Seattle,Washington: Proceedings ofACM SIGMOD International Conference on Management of Data, 1998.13-24.
  • 10HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161.

共引文献47

同被引文献75

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部