期刊文献+

基于异常检测和神经网络的财政欺诈屏蔽分析

Analysis of the Financial Fraud Screening Based on the Anomaly Detection and Neural Network
下载PDF
导出
摘要 随着国家对"三农"问题的重视,作为"三农"政策的重要组成部分,近年来国家逐渐加大农业财政补贴的力度,同时也出现一些财政补贴申请存在欺诈的问题。以Clementine提供的虚拟数据为基础,分析财政补贴申请中可能出现欺诈行为的情况,通过运用SPSS Clementine 11.1软件,利用异常检测和神经网络两种分类算法,对财政申请的欺诈行为进行数据挖掘分析,挖掘出存在较大欺诈可能性的申请者。 As the country's emphasis on "three rural" issue, as an important part of the "three rural" policy, in recent years, the government gradual- ly increases the intensity of agricultural subsidies. At the same time there are also appeared some subsidies fraud. Based on the virtual data provided by Clementine, analyses the fiscal subsidy application may occur in the case of fraud, by using the software of SPSS Clementine 11.1, uses two kinds of classification algorithms include anomaly detection and neural network, carries on the data mining analysis to the financial application fraudulent practice, digs out the possibility of applicants is fraud, finally digs out the applicants which with big possibility of fraudulent.
出处 《现代计算机》 2016年第22期25-28,共4页 Modern Computer
关键词 财政补贴 异常检测 神经网络 数据挖掘 Financial Subsidies Anomaly Detection Neural Network Data Mining
  • 相关文献

参考文献6

二级参考文献22

  • 1何忠伟,侯胜鹏,陈艳芬.中国农业补贴的一个理论分析[J].山东农业大学学报(社会科学版),2004,6(3):5-8. 被引量:7
  • 2韩喜平,李二柱.日本农业保护政策的演变及启示[J].现代日本经济,2005,24(4):55-59. 被引量:29
  • 3刘强,陈立强,蔡晓华.日本农业发展的主要经验及其对我国的启示[J].安康师专学报,2006,18(3):36-38. 被引量:4
  • 4[1]Aggarwal C C, Yu P.Outlier Detection for High Dimensional Data. ln Proc.of ACM SIGMOD'2001,2001
  • 5[2]Breunig M M,Kriegel H P,Ng R,et al.LOF Identifying Densityy-based Local Outliers.In ACM SIGMOD Conference Proceedings,2000
  • 6[3]Hawkins D Identification of Outliers. Chapman and H all, London. 1980
  • 7[4]Ruts I , Rousseeuw P Computing Depth Contours of Bivariate Point Clouds. Computational Statistics and Data Analysis. 1996
  • 8[5]Ramaswamy S , Rastogi R,Shim K.Efficient Algorithms for Mining Outliers from Large Data Sets.ACM SIGMOD Conference Proceedings,2000
  • 9[6]Zhang T, Ramakrishnan R, Livny M.Birch:An Efficient Data Clustering Method for Very Large Databases.In Pore.of ACM SIGMOD, Montreal Canada,1996-06:103- 114
  • 10[7]Preparata F, Shamos M. Computational Geometry: an Irtroduction.Springer, 1988

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部