期刊文献+

一类分段光滑广义Lienard微分系统的极限环分支

Bifurcation of limit cycles for a class of discontinuous generalized Lienard differential system
下载PDF
导出
摘要 文章考虑一类分段光滑广义Lienard微分系统的极限环分支问题。利用一阶平均法,得到了该系统从中心的周期环域分支出极限环的最大个数。结果部分解决了J.Llibre在文[5]中所提出的猜想。 This paper deals with the limit cycle bifurcation for a class of piecewise generalized Lienard dii- ferential systems. Using the first order averaging method for piecewise smooth differential system, we obtain the maximum number of limit cycles which bifurcate from the periodic annulus of the center for the unperturbed system. Our result partially solved the conjecture which state in the paper[ 5 ].
作者 李时敏 郑健松 LI Shimin ZHENG Jiansong(School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China)
出处 《邵阳学院学报(自然科学版)》 2016年第4期11-15,共5页 Journal of Shaoyang University:Natural Science Edition
基金 国家自然科学基金青年科学基金资助项目(11401111)
关键词 极限环 Lienard微分系统 分段光滑微分系统 平均法 limit cycle lienard differential system piecewise smooth differential system averaging method.
  • 相关文献

参考文献1

二级参考文献11

  • 1LI J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields [ J 1- Int J Bifurcation and Chaos, 2003, 13 : 47 - 106.
  • 2SMALE S. Mathematical problems for the next century I J]. The Mathematical Intelligence, 1998, 20: 7- 15.
  • 3BERNARDO M, BUDD C, CHAMPNEYS A, et al. Bi- furcations in nonsmooth dynamic systems [ J ]. SIAM Re- view, 2008, 50:629-701.
  • 4LLIBRE J, TEIXEIRA M. Limit cycles for m-piecewise discontinuous polynomial Lienard differential equations [J]. Z Angew Math Phys, 2015, 66(1) : 51 -66.
  • 5BLOWS T, LLOYD N. The number of small-amplitude limit cycles of Lienard equations [ J ]. Math Proc Camb Phil Soc, 1984, 95 : 359 - 366.
  • 6LLIBRE J, MEREU A, TEIXEIRA M. Limit cycles forthe generalized polynomial Lienard differential equations [J]. Math Proc Camb Phil Soc, 2010, 148:363 -383.
  • 7MIRANDA M, MEREU A. Limit cycles in discontinuous classical Lienard equations [ J ]. Nonlinear Analysis : Re- al World Applications, 2014, 20:67-73.
  • 8LLIBRE J, NOVAES D, TEIXEIRA M. On the birth of limit cycles for non-smooth dynamical systems [ J ]. Bull Sci Math, 2015, 139:229-244.
  • 9SANDERS J, VERHULST F. Averaging methods in non- linear dynamic systems [ M ]. New York : Springer-Ver- lag, 1985.
  • 10BUICA A, LLIBRE J. Averaging methods for finding pe- riodic orbits via Brouwer degree [ J ]. Bull Sci Math, 2004, 128:7-22.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部