期刊文献+

最优画法的一个充分条件

A sufficient condition of optimal drawing
下载PDF
导出
摘要 设D是图G的一个好画法,将G在画法D下的交叉点看成新的顶点,这样得到的图称为G在画法D下的导出平图,记为G_D。即G_D的顶点集V(G_D)=V(G)∪{交叉点},边e由D\V(G_D)的片段组成,并且顶点v和边e关联的充分必要条件是v在边e的闭包里。本文证明了:如果画法D的导出平图的每个面的度数都是3,则D是最优画法。 Let D be a good drawing of the graph G, the induced plane graph of D, denoted by Go, is the graph with vertices V(GD)= V(G) ∪{ crossings} , where the edges are the components of D / V( GD) and v is incident to e if and only if v is in the closure of e. In this paper, we prove that if each face of the induced plane graph GD of D is triangle, then D is optimal.
作者 王晶 WANG Jing(Department of Mathematic and Computer Science, Changsha College, Changsha 410022, China)
出处 《邵阳学院学报(自然科学版)》 2016年第4期22-25,共4页 Journal of Shaoyang University:Natural Science Edition
基金 湖南省自然科学基金资助项目(14JJ3138)
关键词 交叉数 好画法 最优画法 导出平图 crossing number good drawing optimal drawing induced plane graph.
  • 相关文献

参考文献2

二级参考文献15

  • 1BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
  • 2GAREY M R, JOHNSON D S. Crossing number is NP-complete [J]. SIAM J. Algebraic Discrete Methods, 1983, 4(3): 312-316.
  • 3WOODALL D R. Cyclic-order graphs and Zarankiewicz's crossing-number conjecture [J]. J. Graph Theory, 1993, 17(6): 657-671.
  • 4KLEITMAN D J. The crossing number of K5,n [J]. J. Combinatorial Theory, 1970, 9: 315-323.
  • 5ASANO K. The crossing number of K1,3,n and K2,3,n [J]. J. Graph Theory, 1986, 10(1): 1-8.
  • 6KLESC M. The crossing number of K2,3 × Pn and K2,3×Sn[J]. Tatra Mt. Math. Publ., 1996, 9: 51-56.
  • 7KLESC M. The crossing numbers of Cartesian products of paths with 5-vertex graphs [J]. Discrete Math., 2001, 233(1-3): 353-359.
  • 8KLESC M. The crossing numbers of products of paths and stars with 4-vertex graphs [J]. J. Graph Theory, 1994, 18(6): 605-614.
  • 9KLESC M. The crossing number of K5× Pn [J]. Tatra Mr. Math. Publ., 1999, 18: 63-68.
  • 10BEINEKE L W, RINGEISEN R D. On the crossing numbers of products of cycles and graphs of order four [J]. J. Graph Theory, 1980, 4(2): 145-155.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部