期刊文献+

氧化锌插层蒙脱土纳米复合材料的制备及其光催化活性(英文) 被引量:4

Facile Synthesis of ZnO Intercalated Montmorillonite Nanocomposites and Their Photocatalytic Activity
下载PDF
导出
摘要 采用一种简便的方法制备了氧化锌插层蒙脱土纳米复合材料。首先将蒙脱土充分充水后进行冷冻,具有层状结构的蒙脱土充水后会发生膨胀,部分从块状的蒙脱土上剥离形成超薄的片层结构。然后通过可控的水热过程使氧化锌纳米粒子进入蒙脱土层间或覆盖于表面。结果表明,直径1~3nm的纳米氧化锌会插层于蒙脱土的层间,而直径达10~25nm的纳米氧化锌则会镶嵌在蒙脱土表面。该纳米复合材料对模拟污染物甲基橙具有优异的光催化性能。 Herein,we report a facile synthesis of ZnO/montmorillonite(MMT)nanocomposites.The layered structures of MMT was firstly expanded and partly exfoliated into ultrathin few layer structures by fully hydrating and freezing and then ZnO nanoparticles(NPs)were embedded into the layers by a controllable hydrolysis process.The results indicated that ZnO NPs(1-3nm in diameter)were intercalated in the layers of MMT or(10-25 nm in diameter)anchored on the surface of MMT.The nanocomposites was found to have an excellent performance for the degradation of methyl orange(MO),which inferred a potential application as a novel photocatalyst.Analysis showed the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis process.The enhanced photocatalytic activity of ZnO/MMT nanocomposites could be ascribed to the synergistic effect of the MMT loaded with nano-ZnO.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第20期34-38,43,共6页 Materials Reports
基金 陕西省自然科学基础研究计划(2014JQ6209) 西安市科技计划(CXY1430(1)) 陕西科技大学博士科研启动基金(BJ13-23)
关键词 氧化锌纳米粒子 蒙脱土剥离 纳米复合材料 光催化 ZnO nanoparticles montmorillonite exfoliation nanocomposites photocatalysis
  • 相关文献

参考文献1

二级参考文献43

  • 1Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan,D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 2013, 23, 5444-5450.
  • 2Yuan, S.-J.; Chen, J.-J.; Lin, Z.-Q.; Li, W.-W.; Sheng, G.-P.; Yu, H.-Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249.
  • 3Xu, C. B.; Yang, W. S.; Guo, Q.; Dai, D. X.; Chen, M. D.; Yang, X. M. Molecular hydrogen formation from photocatalysis of methanol on TiO2 (110). 3~ Am. Chem. Soc. 2013, 135, 10206-10209.
  • 4Ide,Y,; Torii, M.; Sano, T. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis. J. Am. Chem. Soc. 2013, 135, 11784-11786.
  • 5Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/ iodide shuttle redox mediator. J. Am. Chem. Soc. 2013, 135, 16872-16884.
  • 6Yan, S. C.; Wang, J. J.; Gao, H. L.; Wang, N. Y.; Yu, H.; Li, Z. S.; Zhou, Y.; Zou, Z. G. Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels. Adv. Funct. Mater. 2013, 23, 1839-1845.
  • 7Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H.-M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.
  • 8Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.
  • 9Duncan, T. V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. ColloidlnterJace Sci. 2011,363, 1-24.
  • 10Boukhatem, H.; Djouadi, L.; Abdelaziz, N.; Khalaf, H. Synthesis, characterization and photocatalytic activity of CdS-montmorillonite nanocomposites. AppL Clay Sci. 2013, 72, 44-48.

共引文献9

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部