期刊文献+

原位生成Al_3Zr/6063Al复合材料的高应变速率超塑性(英文) 被引量:3

High Strain Rate Superplasticity of in situ Al_3Zr/6063Al Composites
原文传递
导出
摘要 采用熔体直接反应法,原位制备5%Al_3Zr/6063Al质量分数复合材料。在450℃进行70%变形量锻造预处理,然后进行搅拌摩擦大塑性加工,通过XRD、SEM、EDS、超景深及TEM等分析测试方法研究其高应变速率超塑性。结果表明,通过锻造和搅拌摩擦加工处理后,复合材料的平均晶粒尺寸小于10μm。在350~500℃,初始应变速率为1.0×10^(-3)~1.0×10^(-1)s^(-1)范围内,复合材料均呈现超塑性。在500℃,初始应变速率为1.0×10^(-2)s^(-1),延伸率达到最大值330%,反应敏感指数m值为0.45。分析超塑性变形的主要机制是动态连续再结晶与晶界、位错滑移共同协调完成。 In situ 5wt%Al3Zr/6063 Al composites were fabricate by a direct melt reaction method(DMR) and then processed by deformation pretreatment. Process of the pretreatment was forging of 70% deformation at 450 °C and friction stir processing(FSP). The high strain rate superplasticity of the composites was studied by modern analytic determination methods. The results show that the average grain size of the composites is less than 10 μm after forging and FSP. The composites exhibit superplasticity at the temperature from 350 to 500 °C and initial strain rate from 1.0×10-3 s-1 to 1.0×10-1 s-1. The elongation reaches 330% and the sensitive index(m value) is 0.45 at the initial strain rate of 1.0×10-2 s-1 and the temperature of 500 °C. The dominant mechanisms of superplastic deformation are grain boundary sliding and dislocation slip which is synergized with moderate grain growth and dynamic continuous recrystallization.
作者 焦雷 王晓璐 李惠 赵玉涛 杨永刚 陈建超 Jiao Lei Wang Xiaolu Li Hui Zhao Yutao Yang Yonggang Chen Jianchao(Jiangsu University, ZhenJiang 212013 Jiangsu University of Science and Technology, Zhenjiang 212003, China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第11期2798-2803,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51174098,51605206) Jiangsu University Senior Talent Project Foundation(15JDG077) The Doctor Research Foundation of the Education Ministry of China(20133227110023)
关键词 原位反应 搅拌摩擦加工 超塑性 高应变速率 变形机理 in situ reaction friction stir processing(FSP) superplasticity high strain rate deformation mechanism
  • 相关文献

参考文献2

二级参考文献13

  • 1Mishra R S, Mahoney M W, McFadden S X et al. Scr Mater [J], 1999, 42(2): 163.
  • 2Hans Raj K, Rahul Swamp Sharma, Pritam Singh et al Procedia Engineering[J], 2011, (10): 2904.
  • 3Ma Z Yet al. Scripta Mater[J], 2008, 58:361.
  • 4Su Jianqing et al. Scripta Mater[J], 2005, 52:135.
  • 5Garcia-Bernal M A, Mishra R S, Verma R et al. Scr Mater[J], 2009, 60(10): 850.
  • 6Magdy El Rayes M, Ehab El Danaf A, Mahmoud Soliman S. Materials and Design[J], 2011(32): 1916.
  • 7Maz Y. Met al Mater Trans A[J], 2008, 39A: 642.
  • 8Adern Kurt, Ilyas Uygur, Eren Cete. Journal Processing Technology[J], 2011, 211: 313.
  • 9Devinder Yadav, Ranjit Bauri. Materials Science and Engineering A[J], 2012, 539:85.
  • 10Ranjit Bauri, Devinder Yadav, Suhas G. Materials Science and Engineering A[J], 2011,528:4732.

共引文献3

同被引文献8

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部