期刊文献+

改进的多目标启发式粒子群算法及其在桁架结构设计中的应用 被引量:1

Improved Multi-objective Heuristic Particle Swarm Optimizer and Its Application in Truss Structural Design
下载PDF
导出
摘要 针对工程结构多目标优化设计中出现的约束条件处理能力差、编程复杂,计算效率低且收敛精度差等问题,对启发式粒子群算法(HPSO)进行改进,提出了多目标启发式粒子群算法(MOHPSO),并与多目标粒子群算法(MOPSO)和改进的多目标群搜索算法(IMGSO)进行比较。通过对15杆平面桁架、40杆平面桁架和72杆空间桁架3个经典算例的计算,证明了所提出的MOHPSO算法的有效性。结果表明:MOHPSO算法具有收敛精度高、约束处理能力强、全局最优解选取更合理、非劣解集维护效率高等特点。 According to the common problems in the multi-objective optimization of engineering structures, such as difficulties in dealing with the constraints, the complexity of programming, low calculating efficiency and bad convergence precision, a multi-objective heuristic particle swarm optimizer (MOHPSO) was proposed by improving the heuristic particle swarm optimizer (HPSO). Then the MOHPSO was compared with multi-objective particle swarm optimizer (MOPSO) and improved multi-objective group search optimizer (IMGSO). Through three classic examples of 15-bar plane truss, 40-bar plane truss and 72-bar spatial truss structure, the validity of MOHPSO was proved. The results show that the MOHPSO has better convergence accuracy, constraint handling is powerful, the global optimal solution selection is more reasonable and the maintenance efficiency of the non-inferior-solution set is much higher.
出处 《建筑科学与工程学报》 CAS 北大核心 2016年第6期37-43,共7页 Journal of Architecture and Civil Engineering
基金 国家自然科学基金项目(51178121) 广东省自然科学基金项目(S2012020011082)
关键词 桁架结构 启发式粒子群 多目标优化 约束改进 收敛精度 truss structure heuristic particle swarm optimizer multi-obiective optimization im-proved constraint handling~ convergence accuracy
  • 相关文献

参考文献1

二级参考文献19

  • 1安伟刚,李为吉.单纯形-多目标粒子群优化方法的混合算法[J].西北工业大学学报,2004,22(5):563-566. 被引量:10
  • 2熊盛武,刘麟,王琼,史旻.改进的多目标粒子群算法[J].武汉大学学报(理学版),2005,51(3):308-312. 被引量:21
  • 3崔逊学.多目标进化算法及其应用[M]北京:国防工业出版社,200615-17.
  • 4JOHNSTON M D. An evolutionary algorithm approach to multi-objective scheduling of space network communications[J].International Journal of Intelligent Automation and soft Computation,2008,(03):367-376.
  • 5DEB Kalyanmoy,AGRAWAL Samir,PRATBA Amrit. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,(02):182-197.
  • 6SHIN S Y,LEE I H,KIM D. Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing[J].IEEE Transactions on Evolutionary Computation,2005,(02):143-158.
  • 7HE S,WU Q H. A novel group search optimizer inspired by animal behavior[A].Vancouver,Canada:Science and Technology Press,2006.4415-4421.
  • 8HE S,WU Q H,SAUNDERS J R. Group search optimizer:an optimization algorithm inspired by animal searching behavior[J].IEEE Transactions on Evolutionary Computation,2009,(05):973-990.
  • 9LI Li-juan,LIU Feng. Group search optimization for applications in structural design[M].Berlin/Heidelberg:Springer,2011.52-53.
  • 10RECHIAND Y,FUNG K,TANG Jia-fu. Extension of a hybrid genetic algorithm for nonlinear programming problems with equality an inequality constraints[J].Computers and Operations Research,2002,(03):261-274.

共引文献8

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部