摘要
在环R=F_q+vF_q+v^2F_q+v^3F_q上研究交错循环码,其中q=pr,p是一个素数,3 p(-1).通过建立从Rn到Fq4n的保持自对偶性的Gray映射,由分解定理可以确定环R上交错循环码的生成多项式和幂等生成元.最终可得到环R上交错循环码的对偶码的生成多项式.
Skew cyclic codes over R=Fq+vFq+v^2Fq+v^3Fq are studied, where q=p^r,p is a prime and 3| (p - 1) . A Gray map preserving the property of self-duality from R^n to Fq^4n is given. The generator polynomials and generating idempotent of skew cyclic codes over R are described by a decomposition theorem. The generator polynomials of the dual codes of skew cyclic codes over R are also obtained.
作者
何明英
HE Ming-ying(School of Science, Shandong University of Technology, Zibo 255049, Chin)
出处
《山东理工大学学报(自然科学版)》
CAS
2017年第1期34-38,共5页
Journal of Shandong University of Technology:Natural Science Edition
基金
山东理工大学有限域双语教学4052/115017
山东理工大学博士基金项目4041/415059