期刊文献+

GaN组合开关电路及其驱动技术研究 被引量:6

Driving technology of GaN HEMT and its application
下载PDF
导出
摘要 基于氮化镓的高电子迁移率场效应晶体管(GaN HEMT)具有电子迁移率高、耐高温和极低的寄生电容等诸多特点而成为开关变换器领域关注的焦点。限于目前的制造工艺,基于氮化镓材料的MOS开关器件更容易做成耗尽型,针对耗尽型GaN HEMT器件的负电压关断特性,结合其应用于开关变换器的上电短路问题,提出一种GaN HEMT器件与增强型MOSFET的组合开关电路,可实现对耗尽型GaN HEMT器件的开、关控制及可靠关断,但其关断速度不够快。为此,提出一种快速关断GaN HEMT器件的驱动电路,并得到了进一步提高GaN HEMT器件开关速度的改进电路,可实现对耗尽型GaN HEMT器件快速可靠关断。实例及实验结果验证了所提出电路的可行性。 GaN HEMT is the focus of the switching power supply due to its high mobility,high temperature and low parasitic capacitance. Limited to the fabrication process,the GaN switching device only can be made to depletion-mode switching device. Aimed at the negative voltage turn-off characteristic and the short-circuit problem of the depletion-mode GaN HEMT device,a combination switch with GaN HEMT and enhanced MOSFET is proposed,the turn-on and turn-off control for the depletion-mode GaN HEMT device can be realized,the GaN HEMT device can be turned off reliably,but the tutn-off speed is not fast. Thus,the drive circuit of the GaN HEMT device is proposed,an improved circuit for increasing the tutn-off speed of the GaN HEMT device can be obtained,and fast and reliable turn-off for the Depletionmode GaN device can be realized. Experiments results show the feasibility of the proposed circuit.
出处 《西安科技大学学报》 CAS 北大核心 2016年第6期882-887,共6页 Journal of Xi’an University of Science and Technology
基金 陕西省科学技术研究发展计划(2015SF279)
关键词 氮化镓 高电子迁移率场效应晶体管 耗尽型 驱动电路 开关变换器 GaN HEMT depletion-mode driving circuit switching power supply
  • 相关文献

参考文献9

二级参考文献211

  • 1CHOW T P. High-voltage SiC and GaN power devices[J]. Microelectronic Engineering, 2006, 83(1): 112-122.
  • 2BURK A A Jr, O'LOUGHLIN M J, SIERGIEJ R R, et al. SiC and GaN wide bandgap semiconductor materials and devices[J]. Solid-State Electronics, 1999, 43(8): 1459-1464.
  • 3ROSKER M. Wide bandgap and MMICs[J]. III-Vs Review, 2005, 18(4): 24-25.
  • 4ZHAO J H, ALEXANDROV P, LI X. Demonstration of the first 10 kV 4H-SiC Schottky barrier diodes[J]. IEEE Electron Device Letters, 2003, 24(6): 402-404.
  • 5NISHIO J, OTA C, HATAKEYAMA T, et al. Ultralow-loss SiC floating junction schottky barrier diodes (Super-SBDs)[J]. IEEE Trans Electron Device, 2008, 55(8): 1954-1960.
  • 6SUGAWARA Y, TAKAYAMA D, ASANOK K, et al. 12-19 kV 4H-SiC pin diodes with low power loss[CJ// Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs. Osaka, Japan: IEEE, 2001: 27-30.
  • 7PALMOUR J. Advances in SiC power technology[EB/OL]. [200%03-07]. http://www.mtosymposium.org.
  • 8RYU S H, KRISHNASWAMI S, O'LOUGHLIN M, et al. 10 kV, 123 mΩ.cm2 4H-SiC power DMOSFETs[J]. IEEE Electron Device Letters, 2004, 25(8): 556-558.
  • 9ZHAO J H, ALEXANDROW P, ZHANG J, et al. Fabrication and characterizati on of 11 kV normally off 4H-SiC trenched and implanted vertical junction FET[J]. IEEE Electron Device Letters, 2004, 25(7): 474-476.
  • 10TANAKA Y, OKAMOTO M, AKATSUKA A, et al. 700 V 1.0 mΩ.cm2 Buried Gate SiC-SIT (SiC-BGSIT)[J]. IEEE Electron Device Letters, 2006, 27(11): 908-910.

共引文献74

同被引文献15

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部