期刊文献+

基于改进差分进化算法的IIR滤波器设计 被引量:4

An IIR filter design method based on improved differential evolution algorithm
下载PDF
导出
摘要 差分进化由于其算法简单、收敛速度快,所需领域知识少而受到关注。通常,根据优化问题的约束条件差分进化算法需要进行变量上、下界的限制。本文提出利用IIR滤波器零极点特性来进行IIR滤波器设计,采用复数编码降低了变量的维度,并在设计IIR滤波器时不需要对变量范围进行约束,同时利用超出边界的解进行变异操作,以达到更加快速精确的收敛到全局最优解的目的。 The Differential Evolution Algorithm is concerned for its properties of implementing simplified, convergence fast and requiring less features. Generally, according to constraint conditions of the optimization problems in differential evolution algorithm, the boundary of arguments are required to be restrained. In this paper, an improved algorithm which using the features of zero and pole points of IIR filters is developed for the design of IIR filters. A complex coding method is used to decrease the dimension of arguments. The solutions out of constraint conditions are used to implement mutation operation to achieve the goal of faster and more accurately converge to the global optimal solution.
作者 秋研东 王伟
出处 《电子设计工程》 2016年第23期136-138,142,共4页 Electronic Design Engineering
关键词 差分进化算法 变异操作 IIR滤波器设计 零极点特性 DE mutation operation IIR filter design zero and pole points properties
  • 相关文献

参考文献3

二级参考文献105

  • 1辛斌,陈杰,彭志红,窦丽华.基于互补变异算子的自适应差分进化算法[J].东南大学学报(自然科学版),2009,39(S1):10-15. 被引量:4
  • 2徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报,2005,25(1):15-18. 被引量:3
  • 3YANG Zhenyu, TANG Ke, YAO Xin. Large scale evolu tionary optimization using cooperative coevolution [ J ]. In formation Sciences, 2008, 178 (15) : 2985-2999.
  • 4YANG Zhenyu, TANG Ke, YAO Xin. Scalability of generalized adaptive differential evolution for large-scale continuous optimization [J]. Soft Computing, 2011 ( in press).
  • 5HINTERDING R, MICHALEWICZ Z, EIBEN A E. Adaptation in evolutionary computation: a survey [ C ]//Pro- ceedings of the 1997 IEEE International Conference on Ev olutionary Computation. Indianapolis, USA, 1997:65-69.
  • 6ABBASS H A. The self-adaptive Pareto differential evolu tion algorithm [ C ]//Proceedings of the 2002 IEEE Con gress on Evolution Computation. Honolulu, USA, 2002 : 831-836.
  • 7OMRAN M, SALMAN A, ENGELBRECHT A. Self-adaptive differential evolution [ C ]//Proceedings of the Interna tional Conference on Computational Intelligence and Security. Xi' an, China, 2005 : 192-199.
  • 8SALMAN A, ENGELBRECHT A, OMRAN M. Empirical analysis of self-adaptive differential evolution [ J ]. European Journal of Operational Research, 2007, 183 (2) : 785- 804.
  • 9STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4): 341-359.
  • 10PRICE K, STORN R, LAMPINEN J. Differential evolution : a practical approach to global optimization [ M ]. Berlin, Germany: Springer-Verlag, 2005.

共引文献118

同被引文献43

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部