期刊文献+

基于快速去噪和深度信念网络的高光谱图像分类方法 被引量:11

A hyperspectral image classification method based on fast denoising and deep belief network
下载PDF
导出
摘要 为了改善传统分类方法在高光谱遥感图像去噪和特征提取方面的不足,提出了一种基于快速去噪和深度信念网络的高光谱图像分类方法。该方法利用图像的二阶偏导数和梯度共同控制扩散速度,采用改进的自适应扩散系数对不同区域进行扩散,并利用深度信念网络对去噪后的图像进行地物分类。实验结果表明,与传统的分类方法相比,该方法提高了高光谱图像地物分类的精度。 In order to improve the shortcomings of the traditional classification methods in hyperspectral remote sensing image denoising and feature extraction,a hyperspectral image classification method based on fast denoising and deep belief network is proposed.The method uses the second partial derivative of the image and the gradient to control the diffusion velocity,and uses an improved adaptive diffusion coefficient of diffusion in different regions.Finally the depth of belief network is used for denoising images to classify these terrain features.The experimental results show that compared with the traditional classification methods,the proposed method obviously improves the classification accuracy of the remote sensing image.
作者 高鑫 欧阳宁 袁华 GAO Xin OUYANG Ning YUAN Hua(School of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《桂林电子科技大学学报》 2016年第6期469-476,共8页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61362021) 广西自然科学基金(2013GXNSFDA019030 2013GXNSFAA019331 2014GXNSFDA118035) 广西科学研究与技术开发计划(桂科攻1348020-6 桂科能1298025-7) 桂林电子科技大学研究生教学创新计划(YJCXS201531)
关键词 去噪 高光谱 深度信念网络 图像分类 denoising hyperspectral deep belief network image classification
  • 相关文献

参考文献3

二级参考文献66

  • 1张钧萍,张晔.基于多特征多分辨率融合的高光谱图像分类[J].红外与毫米波学报,2004,23(5):345-348. 被引量:8
  • 2叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 3Lothar Hermes, Dieter Frieau, Jan Puzicha, et al. Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J] In: Proc. IGARSS 99,1:348-350.
  • 4Huang C, Davis L S. Townshend J R G. An assessment of support vector machines for land cover classification [J]. International Journal of Remote Sensing, 2002, 23 : 725-749.
  • 5Martin Brown, Hugh G Lewis, Steve R Gunn. Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing ,2000,38(5) :2346-2360.
  • 6Zhang J, Zhang Y, Zhou T. Classification of hyperspectral data using support vector machine [ C ]. In: IEEE International Conference on Image Processing, 2001:882-885.
  • 7Vapnik V N. Statistical Learning Theory[M]. New York: Wiley. 1998.
  • 8Kre el U. Pairwise Classification and Support Vector Machines [M]. In Advances in Kernel Methods: Support Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. Smola ( eds. ) , The MIT Press, Cambridge, MA, 1999 : 255-268.
  • 9Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks ,2002,13 (2) :415-425, 2002.
  • 10Boardman J W, Kruse F A. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains[C]. Nevada: In Proceeding, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, 1994 ,I-407-I-418.

共引文献210

同被引文献128

引证文献11

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部