期刊文献+

基于ASM的改进型人脸特征点定位方法 被引量:3

An improved facial feature points localization method based on ASM
下载PDF
导出
摘要 针对主动形状模型中局部灰度模型结构简单、初始搜索位置偏移较大的问题,提出一种基于ASM的改进型人脸特征点定位方法。利用左右瞳孔和嘴巴中心的坐标,调整模型的初始搜索位置,在以特征点为中心的一定矩形区域,建立二维局部加权灰度模型和局部纹理模型,并采用新的模型匹配方法定位目标特征点。实验结果表明,基于ASM的人脸特征点定位改进方法相比传统ASM方法,定位精度提高了26.15%。 In order to solve those problems that the structure of local gray model in active shape model algorithm is too simple,and initial model position has a misregistration,an improved facial feature points localization method based on ASM is proposed.Using the coordinates of pupils and mouth to adjust the initial search location,and then establishing a 2Dlocal weighted gray model and local texture model in an expanded rectangular area around the center of the feature point,finally the feature points can be located with the new matching algorithm.Experimental results show that our method improves26.15% on the positioning accuracy than the traditional ASM algorithm.
作者 王洋 李俊 WANG Yang LI Jun(School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China Guangxi Information Science Laboratory Center, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《桂林电子科技大学学报》 2016年第6期477-482,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61367002)
关键词 主动形状模型 局部灰度模型 灰度共生矩阵 局部纹理模型 模型匹配 active shape model local gray model gray level co-occurrence matrix local texture model model matching
  • 相关文献

参考文献3

二级参考文献28

  • 1Cootes T F, Taylor C J, Lanitis A. Multi-resolution search with active shape models [C]//Proceedings of the 12th International Conference on Pattern Recognition, Manchester, 1994, 1: 610-612.
  • 2Li Y, Lai J H, Yuen P C. Multi-template ASM method for feature points detection of facial image with diverse expressions [C] //Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Washington D C: IEEE Computer Society Press, 2006: 435- 440.
  • 3Cristinacce D, Cootes T. Boosted regression active shape models [C] //Proceedings of British Machine Vision Conference, Warwick, 2007, 2:880-889.
  • 4Toth R, Tiwari P, Rosen M, et al. A multi-modal prostate segmentation scheme by combining spectral clustering and aetive shape models [C] //Proeeedirtgs of the SPIE. Bellingham: Society of Photo-Optical Instrumentation Engineers Press, 2008, 6914:69144S. 1-69144S. 12.
  • 5Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting [C]//Proceedings of IEEE Computer Society Conference on Recognition, New York, Computer Vision and Pattern 2006, 1:61-68.
  • 6Ahlberg J. CANDIDE-3 - an updated parameterized face [R]. Linkoping: Linkoping University. Image Coding Group Department of Electrical Engineering, 2001.
  • 7J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 8N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 9Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 10Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.

共引文献217

同被引文献16

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部