期刊文献+

基于卷积神经网络的非法营运车辆识别 被引量:6

Research of illegal operation vehicle identification based on convolutional neural network
下载PDF
导出
摘要 针对非法营运车辆在实际执法中遇到的识别和查处难,并且仅凭法律手段无法得到很好的解决的问题,提出了一种基于卷积神经网络的非法营运车辆识别方法。首先,分析非法营运车辆的特点,制定车辆轨迹生成规则,并通过仿真实验,随机生成包含6 000辆车的轨迹数据集,非法营运车辆和正常车辆各占一半;其次,通过实验验证,确定了适用于该研究的卷积神经网络结构;最后,将车辆轨迹数据处理成大小为112×112的二维轨迹特征图,作为卷积神经网络的输入,对非法营运车辆进行识别研究。仿真实验表明,重复训练12次后,该方法对非法营运车辆的识别正确率能达到90.75%,并且平均耗时的增幅较小。该方法将卷积神经网络运用到了新的领域,也为实际非法营运车辆的识别研究提供了新思路。 Since the illegal operation vehicle' s recognition and investigation encounters lots of difficulties during the practical enforcement, which cannot be well solved only by legal means, an identification method for the illegal operation vehicle based on convolutional neural network was proposed. Firstly, the characteristics of the illegal operation vehicle were analyzed and the rules of vehicle trajectory generation were formulated, and then the trajectory dataset was randomly generated through simulation experiments, which contained 6 000 vehicles and the illegal and normal operating vehicles are fifty-fifty. Secondly, through experimental verification, the appropriate Convolutional Neural Network structure for this research was determined. Finally, the vehicle trajectory data was processed into two-dimensional trajectory feature map, with the size of 112 x 112, as convolution neural network' s input, to discuss the identification of illegal operation vehicle. The simulation experiments show that this method' s recognition accuracy on illegal operation vehicle can reach 90.75% after 12 times repeated training, and the average consumed time has less growth.
出处 《计算机应用》 CSCD 北大核心 2016年第A02期193-196,共4页 journal of Computer Applications
基金 湖北省重点基金资助项目(2015CFA059) 湖北省科技支撑计划项目(2014BAA146) 交通物联网技术湖北省重点实验室项目(2015III 015-B03) 塞尔网络下一代互联网技术创新项目(NGII20151006)
关键词 非法营运车辆 卷积神经网络 轨迹特征图 仿真实验 illegal operation vehicle convolutional neural network trajectory feature map simulation experiment
  • 相关文献

参考文献5

二级参考文献49

  • 1熊本海,钱平,罗清尧,吕健强.基于奶牛个体体况的精细饲养方案的设计与实现[J].农业工程学报,2005,21(10):118-123. 被引量:48
  • 2Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identi- fication[ J]. Transaction of the ASABE, 1993,36 ( 1 ) : 163-171.
  • 3Im C, Nishida H, Kunii T L. Recognizing plant species by leaf shapes-a case study of the Acer family [ C ]//Proceed- ings of 14th International Conference on Pattern Recogni- tion. Brisbane, IEEE. 1998,2 : 1171-1173.
  • 4Oide M, Ninomiya S. Discrimination of soybean leaflet shape by neural networks with image input [ J]. Computers and Electronics in Agriculture, 2000,29(1-2) :59-72.
  • 5Soderkvist O J O. Computer Vision Classification of Leaves from Swedish Trees [ D ]. Linkoping: Linkoping Universi- ty, 2001.
  • 6Ling H, Jacobs D W. Shape classification using the inner- distance[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (2) :286-299.
  • 7Felzenszwalb P F, Schwartz J D. Hierarchical matching of deformable shapes [ C ]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR'07). 2007: 1-8.
  • 8Zhang Shah-wen, Lei Ying-ke, Dong Tian-bao, et al. La- bel propagation based supervised locality projection analy- sis for plant leaf classification [ J ]. Pattern Recognition, 2013,46 (7) : 1891-1897.
  • 9Hubel D H, Wiesel T N. Receptive fields of single neu- rones in the cat' s striate cortex [ J ]. The Journal of physi- ology, 1959,148 (3) :574-591.
  • 10Kunihiko Fukushima. Neocognitron: A self-organizing neu- ral network model for a mechanism of pattern recognition unaffected by shift in position[ J]. Biological Cybernetics, 1980,36(4) :193-202.

共引文献165

同被引文献51

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部