摘要
在局部凸拓扑空间中,利用比广义slater约束条件更弱的条件(C),研究了内部锥类凸集值优化问题的Henig真有效元的Lagrange型最优性条件;所得结果均不要求约束锥有闭有界基.
In locally convex topological space,by applying the condition( C) which is weaker than the generalized slater constraint condition,we have studied the Lagrange type optimality condition for the Henig Proper Efficiency of the ic-cone-convexlike set-valued optimization problem. And meanwhile all the results obtained in this paper are proven under the conditions that the constraint cone needs not to have a closed convex bounded base.
出处
《重庆工商大学学报(自然科学版)》
2016年第6期47-50,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家自然科学青年基金资助项目(61304146)
贵州省科技厅
安顺市政府
安顺学院三方联合基金(黔科合J字LKA[2013]19号)