期刊文献+

低信噪比下突发信号的检测方法 被引量:1

Detection method for the burst signal in a low SNR
下载PDF
导出
摘要 针对低信噪比环境下突发信号检测性能较差的问题,提出了一种基于功率谱倒谱的突发信号的检测方法.该方法首先采用倒谱的最大值作为检验统计量,并利用平滑窗对检验统计量进行平滑;然后,用K均值聚类算法对其分类判决,以区分出信号和噪声;最后,利用基于长度的三态转换给判定结果修正.仿真结果表明,在低信噪比环境下,所提方法具有较好的检测性能和较低的计算复杂度. A detection method for the burst signal based on the eepstrum of the power spectrum is proposed to solve the problem of the poor burst signal detection performance in the low SNR environment. First, the maximum value of the spectrum is used as the test statistic and is smoothed by the smooth window. Then, the K-mean clustering algorithm is used to classify the decision to distinguish the signal and the noise. Finally, the detection of the burst signal is completed by the three-state transition based on the length. Simulation results show that the proposed method has a better detection performance and lower computational complexity in low SNR environments.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第6期164-169,共6页 Journal of Xidian University
基金 陕西省工业科技攻关资助项目(2014K05-59) 中央高校基本科研业务费专项资金资助项目(2014G2320006 310832151089) 国家自然科学基金资助项目(61501348) 东南大学移动通信国家重点实验室开放课题资助项目(2015D01)
关键词 突发信号 信号检测 倒谱 K均值聚类 三态转换 burst signal signal detection cepstrum K-mean clustering tristate conversion
  • 相关文献

参考文献3

二级参考文献29

  • 1肖述才,王作英.端点检测中的一种新的对数能量特征[J].电声技术,2004,28(6):37-41. 被引量:12
  • 2张志敏,郭英,王博.一种基于倒谱特征的语音端点检测改进算法[J].电声技术,2006,30(4):39-42. 被引量:8
  • 3Urkowitz H. Energy detection of unknown deterministic signals. Proceedings of the IEEE,1967,55(4) :523-531.
  • 4Digham F F, Alouini M S, and Simon M K. On the energy detection of unknown signals over fading channels. Proc. , IEEE Int. Conf. on Commununications ( ICC' 03 ), Seattle, May 2003,3575-3579.
  • 5Wall R W. Simple methods for detecting zero crossing. The 29th Annual Conf. of the IEEE Industrial Electronics Society( IECON' '03 ), Virginia, USA, 2-6 Nov. 2003,2477- 2481.
  • 6Enserink S, Cochran D. On detection of cyclostationary signals. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing( ICASSP ' 95 ), Detroit, Michigan, USA, 9-12 May 1995,1-4.
  • 7Shen J L, Hung J W, and Lee L S. Robust entropy-based endpoint detection for speech recognition in noisy environments. Int. Conf. on Spoken Language Processing ( ICSLP' 98 ), Sydney, Australia, 1998,232-238.
  • 8Huang L S, Yang C H. A novel approach to robust speech endpoint detection in car environments. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing ( ICASSP' 00), Mar. 2000,1751-1754.
  • 9Fawcett J A, Maranda B H. The optimal power law for the detectionof a Gaussian burst in a background of Gaussian noise[J]. IEEE Tran,. on Information Theory, 1991, 37(1) : 209 - 214.
  • 10Colonnese S, Scarano G. Transient signal detection using higher order moments[J].I EEE Trans. on Signal Processing, 1999, 47(2) : 515 - 520.

共引文献20

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部