期刊文献+

针对Hammerstein模型的典型系统辨识方法 被引量:2

Typical system identification methods for Hammerstein model
下载PDF
导出
摘要 针对目前Hammerstein模型辨识中存在的成果多对比分析少的问题,文中研究了递推最小二乘、粒子群以及混合蛙跳方法对Hammerstein模型的辨识问题.在理论分析的基础上,通过实验研究了3种方法在辨识误差、收敛速率等方面的性能差异,最后给出了3种方法存在的优势以及潜在的不足,并深入分析其原因.文中结果可为3种典型方法的实际工程应用提供指导,并可为方法未来改进提供思路和指导. For the problem that the achievements of Hammerstein model identification is plenty but the comparative analysis is lack,the identification methods of Recursive Least Squares,Particle Swarm Optimizer and Shuffled Frog Leaping Algorithm are studied. First,the Hammerstein model and the three methods are introduced and analyzed briefly. Then,based on the theory analysis,the system identification error and convergence rate are studied through experiments. Finally,the advantages and inferiority are pointed. The results of this paper can provide guidance for practical engineering of the three typical methods,and also provide ideas for the improvement of the corresponding methods.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2016年第5期473-477,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK20150472)
关键词 系统辨识 HAMMERSTEIN模型 递推最小二乘法 粒子群法 混合蛙跳法 system identification Hammerstein model recursive least squares particle swarm optimizer shuffled frog leaping
  • 相关文献

参考文献2

二级参考文献20

  • 1李建军,盛洁波,王翠,桂卫华.异步电机定转子参数的辨识方法研究[J].电工技术学报,2006,21(1):70-74. 被引量:37
  • 2王明渝,冼成瑜,惠娅倩.感应电动机矢量控制参数离线辨识技术[J].电工技术学报,2006,21(8):90-96. 被引量:17
  • 3Emara H M, Elshamy W, Bahgat A. Parameter identification of induction motor using modified particle swarm optimization algorithm[C]//IEEE International Symposium on Industrial Electronics. Cambridge, USA.. IEEE, 2008: 841-847.
  • 4Stephan J, Bodson M, Chiasson J. An adaptive method for induction motor control[C]//American Control Conference. San Francisco, USA: American Automatic Control Council & International Federation of Automatic Control, 1993: 655-659.
  • 5Marino P, Mungiguerra V, Russo F, et al. Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter[C]//27th Annual IEEE International Conference on Power Electronics Specialists Conference. Baveno, Italy: IEEE, 1996: 1235-1241.
  • 6Cirrincione M, Pucci M, Cirrincione G. Estimation of the electrical parameters of an induction motor with the TLS EX1N neuron[C]// Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems. Oranjestad, Aruba: IEEE, 2002: 1034(1)-I034(8).
  • 7Cirrincione M, Pucci M, Cirrincione G, et al. A new experimental application of least-squares techniques for the estimation of the induction motor parameters[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1247-1256.
  • 8Cirrincione M, Pucci M, Cirfincione G, et al. Experimental identification of an induction motor considering the effects of main flux saturation by using a constrained minimization[C]//IEEE International Symposium on Industrial Electronics. Ajaccio, France: IEEE, 2004: 513-518.
  • 9Wang Kaiyu, Chiasson J, Bodson M, et al. Anonlinear least-squares approach for identification of the induction motor parameters[J]. IEEE Transactions on Automatic Control, 200'5, 50(10): 1622-1628.
  • 10Vieira R P, Azzolin R Z, Gnmdling H A. Parameter identification of a single-phase induction motor using RLS algorithm[C]//IEEE International Conference on Power Electronics. Bonito-Mato Grosso do Sul, Brazilian: IEEE, 2009: 517-523.

共引文献45

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部