摘要
在点云预处理阶段,传统的基于k邻域的稀疏离群点移除算法尚存在一些不足。在点云的处理过程中,关于k邻域的大小以及所要滤去的稀疏离群点的噪声阈值方面,没有给出合理的选取方案。通过对散乱点云传统k近邻稀疏离群点移除算法的分析与研究,提出一种基于k邻域平均距离的频率直方图的分析方法,对传统基于k邻域的离群点移除算法进行了改进。通过该方法可以有效选取合理的k值与噪声阈值。该方法通过对散乱点云设置依次增大的k值,生成k邻域平均距离的统计直方图,分析统计直方图来确定k邻域值的适当大小。针对适当的k值,选取合理的噪声阈值对其进行去噪处理。通过这种方法,为稀疏离群点移除算法中k值和噪声阈值的选取提供了理论依据,提高了点云搜索效率的同时有效防止了离群点的过度删除。
At the point cloud preprocessing stage, there are still some deficiencies existing in the traditional sparse outlier removal algorithm based on k-nearest neighbors. In the point cloud processing, there is no proper selection scheme about the size of the k-nearest neighbors and the noise threshold of the sparse outliers which will be eliminated. According to the analysis and research of the traditional k-nearest neighbors sparse outlier removal algorithm of scattered point cloud, an analysis method of statistical histogram based on the k-nearest neighbors average distance is proposed, improving the distribution of the traditional sparse outlier removal based on k-nearest neighbors. This method is able to select the reasonable k value and the noise threshold effectively. This method generates the frequency statistical histogram of k-nearest neighbor's average distance and analyzes the statistical histogram so as to determine the appropriate value of k-nearest neighbors by setting the k values of the scattered point cloud in successive increase. According to the proper k value,it selects the reasonable noise threshold and carries out de-noising. Through this method,it provides the theoretical basis for the selection of k value and noise threshold in the sparse outlier removal algorithm, and improves the efficiency of point cloud search and prevents the excessive deletion of outliers at the same time.
出处
《计算机应用与软件》
CSCD
2016年第12期169-172,206,共5页
Computer Applications and Software
基金
贵州省科技厅工业攻关项目(黔科合GZ字[2012]3017)
贵州省科学技术基金项目(黔科合J字LKS[2011]9号)
贵州省经济和信息化委员会项目(1158)
关键词
散乱点云
稀疏离群点
K近邻
直方图
密度特征
Scattered point cloud
Sparse outliers
k-nearests neighbor
Frequency histogram
Density character