期刊文献+

一种基于位置服务信息的移动推荐模型 被引量:2

A MOBILE RECOMMENDATION MODEL BASED ON LOCATION-BASED SERVICE
下载PDF
导出
摘要 随着移动终端技术和传感技术的快速发展,如今可以很方便地通过移动终端获得用户所处位置情景信息。目前基于位置推荐的研究已有不少,但对位置情景在推荐系统中的运用方式、重要程度及权重分配上仍有不足之处。针对现有研究的不足,在传统的用户×项目二维推荐模型的基础上,引入位置情景,建立用户×项目×位置三维模型,提出一种针对移动终端环境的混合多维推荐模型,融合了位置情景相似度过滤、协同过滤以及项目相似度过滤三个维度的推荐。实验表明,该推荐模型具有更好的推荐效果。 With the rapid development of mobile terminal technology and sensor technology, it is easy to obtain the location context of mobile users via mobile terminals. Currently there are many researches about location-based recommendation, however, the way, the importance degree and the weight allocation of location context used in the recommended system is not appropriate enough, Aiming at the inadequacy of the existing researches, a three-dimensional model of User ×Item × Position is created by importing the location context based on the traditional two-dimensional recommended model of User × Item, and a hybrid multidimensional recommended model for mobile terminal environment is also proposed. This model integrates location context similarity filtering, collaborative filtering and content-based filtering. The effectiveness of this recommended model is proved in the end.
作者 申园园 余文
出处 《计算机应用与软件》 CSCD 2016年第12期202-206,共5页 Computer Applications and Software
基金 国家自然科学基金项目(11272066)
关键词 个性化推荐 LBS 位置情景相似度 协同过滤 项目相似度 Personalized recommendation LBS Location context similarity Collaborative filtering Item-based similarity
  • 相关文献

参考文献9

二级参考文献75

  • 1吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 2张瑞华,周延泉,王枞,李蕾.移动终端离线浏览系统的新闻推荐服务研究[J].北京邮电大学学报,2006,29(6):21-24. 被引量:5
  • 3李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 4Schiller J, Voisard A. Location-Based Services [M]. San Francisco: Morgan Kaufmann Publisher Inc, 2004.
  • 5Burke R. Hybrid Recommender Systems: Survey and Experiments [J]. User Modeling and User-Adapted Interaction, 2002, 12(4).
  • 6Adomavicius G and Tuzhilin A. Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 7Adomavicius G, Sankaranarayanan R, Sen S, et al.. Incorporating contextual information in recommender systems using a multidimensional approach[J]. A CM Transactions on Information Systems, 2005, 23(1): 103-145.
  • 8Adomavicius G and Tuzhilin A. Context-aware Recommender Systems (Book Chapter)[M]. Recommender Systems Hand-book, New York, Dordrecht, Heidelberg, London, Springer Press, 2011: 217-253.
  • 9Zhang Yu-jie and Wang Li-cai. Some challenges for contextaware recommender systems[C]. In the 1st Workshop on Recommender System at The 5th IEEE International Conference on Computer Science & Education, Hefei, China, 2010: 362-365.
  • 10Wang Li-cai. Understanding and using contextual information in recommender systems[C]. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information, Beijing, China, 2011: 1329-1330.

共引文献572

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部