期刊文献+

聚苯胺/气相生长的碳纤维复合材料的制备及其在微生物燃料电池中的应用研究

Synthesis of PANI/VGCF Composite and Its Application in Microbial Fuel Cell
下载PDF
导出
摘要 用原位化学氧化聚合的方法合成聚苯胺/气相生长的碳纤维的复合材料,采用SEM,FTIR和TGA对聚苯胺/气相生长的碳纤维复合材料的微观形貌、结构和热稳定性进行测定。SEM结果显示,聚苯胺/气相生长的碳纤维复合材料属于纳米级别,形貌与气相生长的碳纤维类似,推测苯胺的聚合作用发生在碳纤维的表面。FTIR结果显示聚苯胺与复合材料具有相似的图谱,进一步证实聚合作用发生在碳材料的表面,聚合过程中未产生新的键合作用。将复合材料作为阴极催化剂修饰到碳布的基底电极上,修饰量为5 mg/cm^2,结果表明复合材料修饰的微生物燃料电池的功率密度最大值为299 m W/m^2,比未修饰的燃料电池提高6.5倍。电化学阻抗谱图较好地符合Nyquist模型,并给出等效电路图。聚苯胺/气相生长的碳纤维复合材料可以作为一种廉价且性能优良的阴极氧气还原反应催化剂。 The polyaniline/vapor grown carbon fiber(PANI/VGCF) was synthesized by in-situ polymerization, and SEM, FTIR, and TGA were used to investigate the microstructure, polymerization mechanism, and thermal stability. SEM images showed that polyaniline/vapor grown carbon fiber was at nano-scale, and the microstructure was similar with purified vapor grown carbon fiber, which indicated that the polymerization of aniline occurred on the surface of the carbon fibers. FTIR spectra gave further explanation of the composite mechanism and there was no new bond generated. The maximum power density of the microbial fuel cell with polyaniline/vapor grown carbon fiber as modification with a specific loading of 5 mg/cm^2 was 299 m W/m^2, which was 6.5 times higher than the unmodified microbial fuel cell. The EIS spectra fitted well to the Nyquist model and the equivalent circuit model was given. Polyaniline/vapor grown carbon fiber could be regarded as one economical and potential cathode catalyst for oxygen reduction reaction in microbial fuel cell.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第6期1155-1160,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 深圳市科技研发资金知识创新计划(JCYJ20130329174424934)资助
关键词 聚苯胺 气相生长的碳纤维 复合材料 阴极催化剂 微生物燃料电池 polyaniline vapor grown carbon fiber nano-composite cathode catalyst microbial fuel cell
  • 相关文献

参考文献1

二级参考文献28

  • 1Logan B E, Regan J M. Microbial fuel cells:challenges and applications[J]. Environmental Science and Technology,2006,40(17):5172-5180.
  • 2Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science and Technology., 2006, 40(17) :5181-5192.
  • 3Li Chao, Ding Lili, Cui Hao, et al. Application of conduc- tive polymers in biocathode of microbial fuel cells and mi- crobial community[J]. Bioresource Technology, 2012, 116 (0): 459-465.
  • 4Oh S, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells [J]. Environmen- tal Science and Technology, 2004,38(18) :4900-4904.
  • 5Cheng S, Logan B E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells[J]. Biore- source Technology, 2011, 102(6) :4468-4473.
  • 6Sanchez D V P, Huynh P, Kozlov M E, et al. Carbon nan- otube/platinum (Pt) sheet as an improved cathode for micro- bial fuel cells[J]. Energy Fuels, 2010, 24( 11 ) : 5897-5902.
  • 7Chatterjee R, Englelhaupt E, Lubick N, et al. Mercury from underground estuary-another toxin for the Baltic Sea[J]. En- vironmental Science and Technology, 2007, 41 (9) : 3032- 3037.
  • 8Xia Xue, Tokash J C, Zhang Feng, et al. Oxygen-reducing biocathodes operating with passive oxygen transfer in micro- bial fuel cells[J]. Environmental Science and Technology, 2013, 47(4) :2085-2091.
  • 9Clauwaert P, Ha D V D, Boon N, et al. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environmental Science and Technology, 2007, 41 (21) : 7564-7569.
  • 10Zhang Yaping, Sun Jian, Hu Yongyou, et al. Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials [J]. International Journal of Hydrogen Energy, 2012, 37 (22) : 16935-16942.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部